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ABSTRACT
Deep cross-modal retrieval methods have shown their competitive-

ness among different cross-modal retrieval algorithms. Generally,

these methods require a large amount of training data. However,

aggregating large amounts of data will incur huge privacy risks and

high maintenance costs. Inspired by the recent success of federated

learning, we propose the federated cross-modal retrieval (FedCMR),

which learns the model with decentralized multi-modal data. Specif-

ically, we first train the cross-modal retrieval model and learn the

common space across multiple modalities in each client using its

local data. Then, we jointly learn the common subspace of multiple

clients on the trusted central server. Finally, each client updates

the common subspace of the local model based on the aggregated

common subspace on the server, so that all clients participated

in the training can benefit from federated learning. Experiment

results on four benchmark datasets demonstrate the effectiveness

proposed method.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.
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1 INTRODUCTION
Cross-modal retrieval [22], which takes one type of data as the

query to retrieve relevant data of another type, has been a hot topic

since the past decade. The existing works can be roughly divided

into two categories: the traditional learning methods [5, 10] and the

deep learning methods [1, 16, 23, 25]. On account of the amazing

performance for feature extraction tasks, deep learning based cross-

modal retrieval methods receives much attention in recent years,

which usually learn modality-specific transformations to project

the data samples from different modalities into a common subspace

[1, 16, 23–25]. However, the deep learning methods rely on a large

amount of high-quality multi-modal data.

In reality, the multi-modal data are generally scattered in various

institutions, and a client can only grasp a small amount of the data.

Due to the limitation of network privacy protection and data secu-

rity management [17], it is tough to aggregate multi-modal data

of multiple clients, and the lack of training data will significantly

reduce the efficiency of the deep cross-modal retrieval model. To ef-

ficiently utilize multi-modal data distributed across multiple clients,

we study Federated Cross-Modal Retrieval(FedCMR).

Federated learning, firstly proposed by Google in 2016[11], is a

machine learning setting wheremany clients cooperate in training a

model under the coordination of a central server while maintaining

the dispersion of data [9]. The existing federated learning models

mostly are work on single modality data [3, 13, 15]. Compared with

the single modality model, the multi-modal model is more complex

in terms of the model functionality and model size. It is necessary to

explore how to use the complex local multi-modal data reasonably

and aggregate the local multi-modal models efficiently.

In this paper, we propose a cross-modal retrieval framework for

distributed data. Taking three clients for example, the process is

shown in Figure 1. The proposed FedCMR consists of three steps.

(1) Local training: Each client trains the cross-modal retrieval model

using the local data. (2) Aggregation: The server aggregates the

common space of the clients. (3) Local update: Each client updates

the common subspace of the local model based on the aggregated

model computed by the last step.
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Figure 1: The framework of FedCMR

To the best of our knowledge, our framework is the first attempt

to combine federated learning with cross-modal retrieval, trying

to provide a solution for cross-modal retrieval in the distributed

data storage scenario. We validate our approach on four benchmark

datasets. The main contributions of this work can be summarized

as follows: (1) By aggregating the updates of all common subspaces

instead of aggregating the client model, we reduce the training

communication overhead. (2) We present a smooth transition from

global common subspace to local common subspace to reduce the

impact on the conversion effect of data from feature space to com-

mon subspace.

2 THE PROPOSED METHOD
Given 𝑁 clients which denoted as 𝐶 = {𝐶1,𝐶2, · · · ,𝐶𝑁 }, with a

set of data 𝐷 = {𝐷1, 𝐷2, · · · , 𝐷𝑁 }, where 𝐷𝑘 = {𝑥𝑘
𝑖
}𝑛𝑘
𝑖=1

is the

set of instances in 𝑘-th client and 𝑛𝑘 is the number of instances

in the 𝑘-th client. Each instance contains𝑚 modalities, i.e., 𝑥𝑘
𝑖
=

{𝑥𝑘
1,𝑖
, 𝑥𝑘

2,𝑖
, · · · , 𝑥𝑘

𝑚,𝑖
}. We introduce the three key steps of FedCMR

in the following.

2.1 Local Cross-modal retrieval Network
We employ DSCMR [26] as the local model to handle the multi-

modal data in each client effectively. Taking image modality and

text modality for example, the net structure is shown in Figure 2. It

is composed of two sub-networks to generate feature vector, one

linear layer to ensure the two sub-networks learn a shared common

subspace for image and text modalities, and one linear classifier to

learn discriminative features by exploiting the label information.

Figure 2: The cross-modal network structure

In the 𝑘-th client, define the representation matrix as 𝑈 𝑘
𝑖

=[
𝑢𝑘
𝑖,1
, 𝑢𝑘
𝑖,2
, · · · , 𝑢𝑘

𝑖,𝑛𝑘

]
, 𝑖 ∈ {1, 2} and𝑢𝑘

𝑖,𝑗
is the learned representation

for the 𝑗-th instance of 𝑖-th modality in the𝑘-th client. Denote the la-

belmatrix𝑌𝑘 =

[
𝑦𝑘
1
, 𝑦𝑘

2
, · · · , 𝑦𝑘

𝑛𝑘

]
and𝑦𝑘

𝑖
= [𝑦𝑘

𝑖
(1), 𝑦𝑘

𝑖
(2), · · · , 𝑦𝑘

𝑖
(𝑐𝑘 )]𝑇

where 𝑦𝑘
𝑖
( 𝑗) = 1 if the 𝑖-th instance belongs to the 𝑗-th category,

𝑦𝑘
𝑖
( 𝑗) = 0 otherwise. 𝑐𝑘 is the number of categories in the 𝑘-th

client. The objective function of DSCMR is as follows:

𝐿 = 𝑙1 + 𝜆𝑙2 + 𝜂𝑙3 (1)

where 𝑙1 = 1

𝑛𝑘

∑
2

𝑖=1 ∥𝑃𝑇𝑈 𝑘𝑖 − 𝑌
𝑘 ∥𝐹 is the discrimination loss in

the label space, 𝑃 is the projection matrix of the linear classifier.

𝑙2 =
1

(𝑛𝑘 )2
∑
2

𝛼,𝛽=1

∑𝑛𝑘
𝑖, 𝑗=1 (𝑙𝑜𝑔(1 + 𝑒

Γ
𝛼𝛽

𝑖 𝑗 ) − 𝑆𝛼𝛽
𝑖 𝑗

Γ
𝛼𝛽

𝑖 𝑗
) is the loss in the

common representation space, Γ
𝛼𝛽

𝑖 𝑗
is the similarity between two

instances in the 𝛼-th modality and the 𝛽-th modality, 𝑆
𝛼𝛽

𝑖 𝑗
is an

indicator function whose value is 1 if the two elements are the

representations of intra-class samples, otherwise 0. Notice that

𝛼 = 𝛽 shows the intra-modality relationship, and 𝛼 ≠ 𝛽 shows the

inter-modality relationship. 𝑙3 = 1

𝑛𝑘
∥𝑈 𝑘

1
− 𝑈 𝑘

2
∥𝐹 is the modality

invariance loss. The hyper-parameters 𝜆 and 𝜂 control the contri-

butions of the last two components.

2.2 Model Aggregation
2.2.1 Aggregation Framework. In the traditional federated learning

algorithm, multiple clients train the model collaboratively under

the coordination of a trusted central server. During each round

of communication, each selected client computes an update to

the model using the entire local dataset and uploads the training

result model to the server for security aggregation. However, when

the local net architecture is complex and the number of network

parameters is large, such an approach usually results in a large

communication overhead during the training process.

Considering that the cross-modal network uses the common sub-

space to connecting multiple modalities, we share the knowledge

among clients by using the common space. Specifically, the server

collects the linear layer parameters which learn the common space

and combines the updates of all common subspaces as eq.(2) to find

a globally consistent potential common subspace.

𝑊𝑡 =

𝐾∑
𝑘=1

𝑞𝑘𝑡𝑊
𝑘
𝑡 (2)

where 𝐾 is the number of selected clients during the 𝑡-th communi-

cation,𝑊 𝑘
𝑡 is the parameters of the penultimate linear layer from

the local cross-modal retrieval network which can be seen as the

updated local common subspace,𝑊𝑡 is the global common space

and 𝑞𝑘𝑡 is the weight of the 𝑘-th client.

2.2.2 Weighting Scheme. Since the model will be more generalized

with more samples and label categories, the weight 𝑞𝑘𝑡 of each client

is proportional to the number of samples and the number of label

categories owned by the client, i.e., 𝑞𝑘𝑡 ∝ 𝑆𝑘 ,

𝑆𝑘 =
𝑛𝑘∑𝐾
𝑘=1

𝑛𝑘
.

𝑐𝑘∑𝐾
𝑘=1

𝑐𝑘
. (3)

Moreover, given that in each round of communication, under the

same loss calculation mechanism, the retrieval ability of the local

cross-modal model is stronger when the loss value of the model is

lower. Thus, we believe that the variable weight should be inversely

proportional to the loss value. Inspired by Gompertz function [12],

we calculate 𝑉𝑘𝑡 of each client as eq.(4).

𝑉𝑘𝑡 = 𝑒−𝑒
𝑓 𝑘𝑡 /(

∑𝐾
𝑘=1

𝑓 𝑘𝑡
𝐾

)
, (4)
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where 𝑓 𝑘𝑡 represents the loss value of cross-modal retrieval model

trained by local data in the 𝑡-th round of communication. We could

conclude that 𝑞𝑘𝑡 ∝ 𝑉𝑘𝑡 .
Overall, the weight 𝑞𝑘𝑡 of the client is as follows. The hyper-

parameters 𝛼 controls the weight of the loss of the model.

𝑞𝑘𝑡 =
𝑒𝑆
𝑘+𝛼𝑉 𝑘𝑡∑𝐾

𝑘=1
𝑒𝑆
𝑘+𝛼𝑉 𝑘𝑡

(5)

2.3 Local update
In the traditional federated learning algorithm, after the central

server obtaining the global model𝑊𝑡 , the central server then sends

𝑊𝑡 back to all clients, and each client replaces the local model𝑊 𝑘
𝑡

with𝑊𝑡 . However, in a multi-modal setting, it is very stiff to directly

replace the𝑊 𝑘
𝑡 with𝑊𝑡 . To mitigate this issue, we present a smooth

transition for𝑊 𝑘
𝑡+1, which integrates the local training update and

improves the stability of the overall framework.

Firstly, at the beginning of each communication round, the clients

record the local common subspace as𝑊 𝑘
0
.

Then, each client trains the model with local data to get the

updated local common subspace𝑊 𝑘
𝑡 and uploads it to the central

server. The server returns the aggregated common subspace𝑊𝑡 .

Finally, after receiving𝑊𝑡 from the server, as shown in eq.(6),

each client adds the modifications𝑊 𝑘
𝑡 −𝑊 𝑘

0
to𝑊𝑡 to get𝑊 𝑘

𝑡+1.
The client uses𝑊 𝑘

𝑡+1 as the common subspace of the local retrieval

model to achieve a smooth transition from the global common

subspace to the local common subspace.

𝑊 𝑘
𝑡+1 =𝑊𝑡 + 𝛾 (𝑊

𝑘
𝑡 −𝑊 𝑘

0
) (6)

2.4 The Algorithm
Algorithm 1 presents the implementation process of FedCMR. For

the federated optimization process, to make each client obtains

a high-quality model suitable for the local objective function, we

divide the training process into two stages: 1) joint training and 2)

independent enhancement training.

First, in the joint training stage, each client will randomly select

80% of the local dataset to complete the model aggregation process.

Second, during the independent enhancement training phase,

each client complete the local update process and continue to iterate

over the local model with the remaining 20% of the data, so as

to shrink𝑊 𝑘
𝑡+1 and make it more suitable for the local model to

measure the similarity between samples from different modalities.

3 EXPERIMENT
3.1 Experimental Setup
3.1.1 Datasets. We conduct experiments on four benchmark datasets:

the MS-COCO dataset [14], the MIR-Flickr25K dataset [7], the

Wikipedia dataset [19] and the Pascal Sentence dataset [18]. The

statistics of the datasets are summarized in Table 1. The last column

stands for the number of training/test subsets separately.

The above datasets have been collected together. Due to the lim-

ited amount of Pascal Sentence andWikipedia dataset, we distribute

the data equally among three clients to simulate the federated cross-

modal retrieval process in the experiments.

Algorithm 1 The proposed FedCMR

1: procedure Federated Optimization

2: Input: The set of clients,𝐶 = {𝐶1,𝐶2, · · · ,𝐶𝑁 }; The set of dataset,
𝐷 = {𝐷1, 𝐷2, · · · , 𝐷𝑁 }; The number of communication round,𝑇 ; The

number of selected clients, 𝐾 ;

3: for each round t = 1, ..., T - 1 do
4: 𝐶𝑡 , 𝐷𝑡 ← (random set of K clients);

5: 𝑊𝑡 ←Model Aggregation(𝐶𝑡 ,𝐷𝑡 );

6: for each client 𝑐 ∈ 𝐶𝑡 in parallel do
7: LocalUpdate(𝑊𝑡 );

8: end for
9: end for
10: end procedure
11: procedure Model Aggregation

12: Input:𝐶𝑡 , 𝐷𝑡
13: for each client 𝑐 ∈ 𝐶𝑡 in parallel do
14: Performs local training using 80% data;

15: Obtains the updated local common subspace𝑊 𝑘
𝑡 ;

16: Calculates client weight 𝑞𝑘𝑡 using eq.(5);

17: end for
18: Gets global common subspace𝑊𝑡 using eq.(2);

19: return𝑊𝑡 ;
20: end procedure
21: procedure LocalUpdate
22: Input:𝑊𝑡
23: Calculates common subspace𝑊 𝑘

𝑡+1 using eq.(6);
24: Iterate over the local model with the remaining 20% data;

25: end procedure

Table 1: Statistics of the datasets.

Dataset # of Categories # of Instance

MS-COCO 80 82081/30137

MIRFlickr-25K 24 16012/2002

Wikipedia 10 2173/462

Pascal Sentence 20 800/100

3.1.2 Baselines. To show the effectiveness of the proposed fed-

erated learning method, we compare FedCMR with the following

methods: (1)DSCMR [26], which conducts DSCMR on each client,

but does not aggregate the clients. (2)FedAvg [15], which conducts

DSCMR on each client, and then aggregates the clients using Fe-

dAvg. (3)FedProx [13], which conducts DSCMR on each client, and

then aggregates the clients using FedProx.

3.1.3 Parameter setting. In our experiments, we adopt a 19-layer

VGGNet [21] to learn the representations of the image samples

and obtain a 4,096-dimensional representation vector outputted by

the fc7 layer of the VGGNet for each image. For representing text

samples, we use the sentence BERT [2] to learn a 1024-dimensional

representation vector for each text. For the data partition of these

datasets, we follow the data partition strategy of [4, 6, 8, 26].

All the parameter settings of the baselines are based on the

original papers. For the proposed FedCMR, 𝛾 is set by the grid

[−2,−1,−0.5, 0.5, 1, 2] and𝛼 is set by the grid [1, 5, 10, 15, 20, 30, 50, 100].
We utilize thewidely-used federated learning framework PySyft[20]

to simulate the federated cross-modal retrieval process.
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Table 2: Results on the Pascal Sentence dataset.

Client DSCMR FedAvg FedProx FedCMR

Image→Text A 0.695 0.683 0.657 0.715
B 0.711 0.681 0.648 0.726
C 0.689 0.671 0.626 0.701

Text→Image A 0.706 0.665 0.587 0.725
B 0.702 0.664 0.615 0.732
C 0.699 0.639 0.575 0.683

Average A 0.700 0.674 0.622 0.720
B 0.706 0.673 0.632 0.729
C 0.695 0.655 0.600 0.692

Table 3: Results on the Wikipedia dataset.

Client DSCMR FedAvg FedProx FedCMR

Image→Text A 0.469 0.456 0.400 0.480
B 0.479 0.454 0.399 0.487
C 0.450 0.445 0.393 0.463

Text→Image A 0.434 0.391 0.355 0.429

B 0.437 0.404 0.355 0.454
C 0.414 0.375 0.334 0.422

Average A 0.452 0.424 0.377 0.455
B 0.458 0.430 0.377 0.471
C 0.432 0.410 0.364 0.443

Table 4: Results on the MIRFlickr-25K dataset.

Client DSCMR FedAvg FedProx FedCMR

Image→Text A 0.745 0.740 0.739 0.742

B 0.737 0.737 0.736 0.742
C 0.734 0.736 0.734 0.738

Text→Image A 0.758 0.761 0.752 0.776
B 0.753 0.762 0.753 0.771
C 0.752 0.759 0.746 0.775

Average A 0.752 0.751 0.745 0.759
B 0.745 0.749 0.745 0.756
C 0.743 0.747 0.740 0.757

3.2 Experimental Result
We evaluate the baselines using the widely-used mean Average Pre-

cision (mAP) score for all four datasets. Table 2∼Table 5 present the
mAP scores of FedCMR and the compared methods. In each column

of the tables, the best result is highlighted in boldface. We have the

following observations from the tables: (1) FedCMR significantly

outperforms the two benchmark federated learning methods on all

of the four datasets. (2) FedCMR outperforms DSCMR generally.

(3) By comparing with the mAP result on the MIRFlickr-25K and

MS-COCO datasets, the advantage of FedCMR is more evident on

the Pascal Sentence dataset and the Wikipedia dataset. The results

indicate that it is reasonable to study multi-modal federated learn-

ing, especially in a scenario with a small number of data, and the

multi-modal federated learning is more effective for aggregating

cross-modal retrieval models.

Table 5: Results on the MS-COCO dataset.

Client DSCMR FedAvg FedProx FedCMR

Image→Text A 0.779 0.728 0.618 0.777

B 0.775 0.696 0.623 0.774

C 0.775 0.705 0.624 0.781
Text→Image A 0.751 0.703 0.628 0.755

B 0.752 0.698 0.629 0.759
C 0.753 0.708 0.628 0.755

Average A 0.765 0.715 0.623 0.766
B 0.764 0.697 0.626 0.766
C 0.764 0.706 0.626 0.768

3.3 Parameter Analysis
In this subsection, we analyze the effect of the hyper-parameters

on the performance of FedCMR. Due to space limitation, we only

present the influence of 𝛼 on the Pascal Sentence dataset. We set 𝛼

vary in the range [1, 5, 10, 15, 20, 30, 50, 100]. With 𝛾 = 1, Figure 3

shows the average mAP scores of FedCMR on the three clients

versus different values of 𝛼 . We can see that all three clients perform

stable relatively when 𝛼 vary in [10, 15, 20, 30]. Thus 𝛼 is set as 20

for all experiments.

Figure 3: Analysis of parameter 𝛼

4 CONCLUSION
This paper proposes a novel framework to provide a solution for

cross-modal retrieval in the distributed data storage scenario. Based

on the traditional federated learning algorithm, we have inno-

vatively implemented the following steps to form FedCMR: 1)

Aggregation of common subspace; 2) Client weight calculation

method designed for cross-modal retrieval; 3) Smooth transition

from global common subspace to local common subspace; 4) Two-

stage enhanced training. Comprehensive experimental results on

four widely-used multi-modal datasets have demonstrated the ef-

fectiveness of our proposed framework. As for future work, we

want to further explore the federated cross-modal retrieval under

harsh conditions, such as small data distribution and incomplete

data.
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