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a b s t r a c t

Recommender systems have attracted widespread attention in various online applications. To effec-
tively recommend the needed items of users, knowledge graphs have been introduced to provide
rich and complementary information to infer user preferences in recommender systems. Existing
efforts have explored user preferences through specific paths and item embedding in knowledge
graphs. However, user preferences have hardly been fully captured because users and items are always
separately modeled. To address this problem, we propose a model to represent items from a user’s
perspective that provides effective supplementary information. User preferences encoded in historically
clicked items are propagated along links in the knowledge graph. We propose a gated attention unit
to capture user preferences from specific types of paths. Based on the captured preference information
through the knowledge graph and supplementary item information, we generate effective reasoning
paths to infer the underlying rationale of user–item interactions using the sequential model. Through
extensive experiments on real-world datasets, we demonstrate that the proposed model achieves
significant improvements over the state-of-the-art solutions.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Recommendation technologies aim to ease information over-
oad on the internet and have been a hot research topic in
ndustrial and academic fields. Effective recommendation algo-
ithms are devised to make full use of user’s historical behavioral
nformation, such as purchase records, click information and eval-
ation information on e-commence websites, to accurately model
ser preferences.
Among various recommendation models, the collaborative

iltering model is one of the most classic and effective algo-
ithms [1]. With recent advances in deep learning, neural
etwork-based recommendation models exhibit powerful capa-
ilities in modeling user–item interactions. For example, the
eep crossing model [2] converted sparse features into dense
eatures through the embedding layer and obtained the final
ecommendation using transformed spliced feature vectors and
multilayer perceptron. The wide and deep model [3] combined
linear model that deals with interactions of sparse features

nd a deep model that captures potential feature interactions.
nspired by the wide and deep model, the DeepFM model [4]
ook the relationship between features into consideration using
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950-7051/© 2021 Elsevier B.V. All rights reserved.
the FM model [5]. The DeepFM model not only extracted high-
order features by a deep neural network but also paid attention
to the interaction between high- and low-order features. Since
the attention mechanism has been widely used in image clas-
sification [6] and machine translation [7], the AFM model [8]
introduced the mechanism into the FM model [5] so that the
attention network assigns distinct weights to the second-order
interaction features. Although deep learning based models have
achieved higher accuracy, their interpretability has much room
for improvement in mathematical simulation and approximation.

To improve the interpretability of recommendation, many re-
searchers seek to use other effective information in modeling user
preferences, such as knowledge graphs. A knowledge graph (KG)
not only contains various items but also involves the relationships
between items, which makes it a potentially useful resource
for recommendation. We illustrate an example of a knowledge
graph in Fig. 1. From the example, we can see that edges in
the knowledge graph can reveal the relationships between two
items, such as the ‘film->genre’ edge that indicates film1 is a
ocumentary. There are two main benefits of knowledge graphs
n recommendation. One advantage is that knowledge graphs can
rovide abundant supplementary information on recommending
tems, which is beneficial for improving recommendation accu-
acy. Another benefit is that edges between items provide much
ore semantic information among items, which can enhance

he interpretability of recommendations by leveraging reasoning
long specific paths.
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Fig. 1. An example of a knowledge graph.
The knowledge graph-based recommendation model has been
roposed by using entity embedding for combined multiple links
f knowledge graphs [9–17]. For example, the metapath-based
odel [11,18] learned effective relationship representations be-

ween users and items by walking on the empirically predefined
etapath, which served as context and was combined with item–
ser embedding to improve recommendations. Another category
f models apply graph embedding and entity embedding tech-
iques, such as TransH [19] and TransR [20], to obtain effective
tem representations [21,22]. However, existing studies have been
ostly focused on introducing supplementary information from
nowledge graphs, partly ignoring the interpretability that can be
eneralized through knowledge graphs.
To address this problem, we propose a novel model CIEPA

hat uses the knowledge graph to combine item embedding and
ath attention for recommendation. Specifically, CIEPA predicts
he user click probability for certain items based on his or her
istorical clicks. The core idea behind the CIEPA model lies in
elective preference propagation. Selective preference propaga-
ion aims to model the hidden preference information in the
nteraction between users and items. The preference information
ropagates along links of the knowledge graph with significant
ser bias. We propose a user-level path attention mechanism to
apture the user preferences. We generate global item vectors to
ncode an item co-occurrence matrix with respect to the same
ser. The global item vector provides hidden information that is
ot contained in the knowledge graph to ease the intrinsic incom-
leteness of the knowledge graph. When preference information
ropagates along links in the knowledge graph, the global item
ector can filter out the spam information and acquire composite
emantic information on the path.
The main contributions of this work are threefold: (1) We de-

elop a path-level attention mechanism for explainable item rec-
mmendation. The mechanism provides reasonable explanations
or user preferences toward different items and maintains high
rediction accuracy. (2) We introduce global item vectors as com-
lements to decompose the co-occurrence matrix of liked items
o capture effective hidden information of items. (3) We conduct
omprehensive experiments, and the results demonstrate the

ffectiveness of the proposed CIEPA model.

2

2. Related work

2.1. Item embedding

Currently, there are mainly two types of recommender sys-
tems, item-based recommendation and user-based recommen-
dation. Item-based recommendation assumes that if two items
are liked by the same user, the embedding of these two items
tends to be nearer in the embedding space [23]. User-based
recommendation [24–26] follows a similar idea in that if two
users such as the same item, they may have similar interests
in this kind of item. Therefore, how to obtain useful item em-
bedding largely affects the effectiveness of recommender sys-
tems. To accurately represent items, many item embedding meth-
ods are proposed based on one-hot embedding [27], graph em-
bedding [28] and word2vec [23,29]. Among existing embedding
methods, word embedding and matrix factorization [1,5,30] are
proven to be effective in item embedding that models user pref-
erences [31]. For example, Liang [32] proposed a regularized
multiembedding model that captures co-occurrence patterns of
coliked and codisliked items, which substantially outperformed
the state-of-the-art models in recommendation tasks.

2.2. Attention mechanism

The attention mechanism has been applied in recommender
systems to assign distinguished weights on the input embedding
of items. For example, the MCRec model developed deep neu-
ral networks with the coattention mechanism to leverage rich
metapath-based contexts [11]. The SULM model analyzed the
sentiment of user reviews to capture the most appealing aspect of
items [33]. The deep interest network proposed by Zhou et al. [34]
adopted an attentive network to model the different importance
values of high-level features between the embedding layer and
the concatenation layer. Wang et al. [9] explored path represen-
tations along the knowledge graph between users and items. They
used an LSTM to model the paths connecting users and items to
capture the preferences of users. Knowledge graphs have been
used in recommendation tasks. Shi et al. [12] proposed a learn-

ing path recommendation model based on a multidimensional
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nowledge graph framework for e-learning. The model generated
ersonalized learning paths to improve e-learning experiences.
ang et al. [13] proposed the hierarchical attention graph convo-
utional network incorporating knowledge graph for explainable
ecommendation (HAGERec). The model captured users’ potential
references based on the high-order connectivity structure of
heterogeneous knowledge graph and provides in-depth ex-
lainability in recommendation. Wu et al. [14] proposed a novel
xercise recommendation method. The method adopted recur-
ent neural networks (RNNs) and deep knowledge tracing (DKT)
o capture the knowledge concept coverage for diversified novel
ecommendation. Zhu et al. [15] also addressed the problem of
-learning and proposed a new multiconstraint learning path
ecommendation algorithm based on a knowledge map for accu-
ate path recommendation. Xie et al. [16] proposed an attentive
etagraph embedding approach for item recommendation and
emonstrated the model’s superiority to baseline models. Ahma-
ian et al. [17] proposed using implicit relationships to enhance
ocial recommendations based on a neighborhood improvement
echanism and obtained state-of-the-art recommendation per-

ormance. Alhamid et al. [35] proposed a novel personalized
ecommendation model that employed context for modeling user
references and achieved higher accuracy over state-of-the-art
lgorithms. Rawashdeh et al. [36] addressed the problem of tag
ecommendation in folksonomy using a graph-based approach
hat modeled folksonomy as a weighted undirected tripartite
raph and effectively improved recommendation performance.
In this work, we propose the dual hierarchical attention in the

roposed model, including the item attention and the path atten-
ion. The item attention is computed based on the distribution of
tem triples in each hop to capture the most significant interest of
sers. The path attention captures user preferences for choosing
specific path. Item attention helps explain which genre appeals
o a certain user, while the path attention can distinguish the
mportance of different lines of user interest.

. Methodology

.1. Overall framework

In this section, we introduce the proposed CIAPE framework
n detail. The overall framework of our model is illustrated in
ig. 2. The proposed model treats the item embedding and user
mbedding as inputs and outputs the click probability of items.
or a specific user, his or her historical clicked items are taken as
he seed node in knowledge graph. The item information of the
eed node is then propagated to its linked items through several
ops in the graph. Hopkuser denotes kth hops from user’s seed
ode. For each hop, specific preference embedding of the user
is computed based on item embedding and path attention. To

ully capture the item information, we introduce a global vector
odel that takes the co-occurrence matrix of items as inputs
nd outputs the item global vectors. The item global vectors are
hen concatenated with the preference embedding of the first
op. The concatenated embedding is fed into a long short-term
emory network (LSTM) as the last inputs, in which the last
op’s preference embedding is set as the first input of the LSTM.
inally, we predict the click probability using the combined pref-
rence embedding by the LSTM and the refined item embedding
hat concatenates the corresponding entity embedding and global
mbedding.
3

3.2. Modeling the preference propagation in a knowledge graph

3.2.1. Ripple set
Knowledge graphs have various entities and edges. As illus-

trated in Fig. 1, entity types can be generally divided into two
categories: item nodes and item attribute nodes. For example,
the item attribute nodes of a movie-related graph include nodes
representing actors, directors, genres, countries and languages.
Inspired by the idea of the RippleNet model [37], we consider that
node information related to items can be propagated in knowl-
edge graph. Since the interaction between an item and a user
encodes the user preference, we believe that user preferences can
also be propagated along the paths in a knowledge graph. Taking
the original interactions, such as clicks of items by users, as the
seed node, item entities of the kth hop from the seed item nodes
can be defined as follows.

Nk
user =

{
t|(h, r, t) ∈ g, h ∈ Nk−1

user

}
k = 1, 2, . . .,H (1)

where g represents the knowledge graph in the form of triples (h,
r, t). h, r and t represent the head node, relationship and tail node
in one triple of knowledge, respectively. H represents the number
of hops. When k = 0, the set of items is the clicked items by the
user.

The propagation process is analogous to a ripple. The list of
nodes that interacts with a user is viewed as multiple raindrops
falling into calm water that can cause a water ripple net. The
propagation process of the ripple can be represented as multiple
hops from the center to the distance, each hop containing a
different set of entities. The kth hop ripple set of user u is defined
as the set of knowledge triples activated by the items in Nk−1

user .

Hopkuser =
{
(h, r, t) |(h, r, t) ∈ g, h ∈ Nk−1

user

}
k = 1, 2, . . .,H (2)

where H represents the number of hops. As the propagation
distance increases, the useful information decreases gradually,
and noisy information continuously increases. In the wave propa-
gation process generated by the original seed node, if the breadth
(the number of triples in each hop) and the depth of propagation
(the number of hops) are unlimited without taking some filtering
measures, it not only leads to an increase of the computational
burden but also reduces the effectiveness of the model. In the
next subsections, we introduce our solution to limit the breadth
and depth in ripple propagation.

3.2.2. Preference propagation
In a knowledge graph, each item node is associated with a d-

dimensional item embedding V ∈ Rd. The preference information
of user u for item v in the kth hop, denoted as Pk

u→v , can be
obtained using a mapping function between the embedding of
item v and Hopkuser of user u. For each triple

(
hk
i , r

k
i , t

k
i

)
in Hopkuser ,

the similar probability between hk
i and item v under relationship

rki can be computed as follows.

pki = softmax(attention
(
rui

)
vT rki h

k
i ) (3)

where rki ∈ Rd×d and hk
i ∈ Rd are the embeddings of the relation

and the head item, respectively. i represents the ith triple in the
kth hop. The relation in the same categories in different hops has
the same vectors. attention

(
rui

)
represents user u’s preference for

the type of rui , which reflects how much attention that user u
gives to different item attributes.

Noticeably, the knowledge graph, as a heterogeneous network,
involves more than one type of edge. In heterogeneous network
embedding, the semantic information of each edge type is differ-
ent, and the incompatibility of semantic information has attracted
extensive attention from scholars [38,39]. Taking the knowledge

graph of movies as an example, when the head node of a triple
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Fig. 2. The framework of CIAPE. This figure illustrates the propagation process activated by the user’s click history, where F(.) represents the function to compute
he prediction probability. The framework treats the item embedding and user embedding as inputs and outputs the click probability of items. For a specific user
lick (the top-left corner), his or her historical clicked items are taken as the seed node for modeling user preference. The item information of the seed node is then
ropagated to its linked items through several hops in the graph. Hopk

user denotes the kth hop from user’s seed node. For each hop, specific preference embedding of
he user u is computed based on item embedding and path attention. Moreover, a global vector model is used to take the co-occurrence matrix of items as inputs
nd outputs the item global vectors. The item global vectors are then concatenated with the preference embedding of the first hop. The concatenated embedding is
ed into a long short-term memory network (LSTM) as the last inputs. Finally, the click probability is predicted using the combined preference embedding by the
STM and the refined item embedding that concatenates the corresponding entity embedding and global embedding.
c
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c
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epresents a movie entity, the types of its directed linked edge
nclude ‘film.genre’, ‘film.director’, ‘film.actor’, and ‘film.language’.
he corresponding tail node represents the entity of the movie
enre, person (directors and actors are of the same type, and there
s an intersection between them; some directors might also have
he role of an actor) and language types. Edges of different types
ith incompatible semantic information can be used to generate
istinctive representation vectors. Since different weight matrices
re assigned to different edges, the similarity between the head
ode and the item node in different relation semantic spaces can
e calculated.

.2.3. Path attention
Inspired by the attention-driven factor model [40] that takes

he attention-driven integration layer to capture users’ atten-
ion distributions on different item features, we propose a path
ttention mechanism to address user preference relations in a
nowledge graph. We formulate this idea as follows.
u
ri = softmax(waui) (4)

here wa ∈ R(n+1)×k denotes the attention mapping matrix.
ttention (ru) = {aur0, a

u
r1 . . . . . . aurn} indicates the attention distri-

ution of the ith user. auri denotes user u’s preferences on edge
ype ri. n is the number of edge types. To avoid the overfitting
roblem of parameters, mapping matrix wa is shared by all users.
To explain the motivation of path attention, we illustrate some

ata statistics in Fig. 3, which includes the number of specific
4

edges in the knowledge graph of the movie and the book and the
number of corresponding tail nodes. From this figure, we can find
that the distribution of the edge types and the distribution of the
attribute nodes are very unbalanced in the knowledge graph.

When k is an odd number, triple (h,r,t) in Hopk
user represents

the head of an item (for the book dataset, the item is a book,
while for the movie dataset, the item is a ma movie), a, and
the tail is the item’s attributes. The number of triples in Hopk

user
is limited by the computational burden; in another words, the
propagation breadth of each layer needs to be constrained. For
the Hop1

user of the user, different users can exhibit different choice
tendencies for different item characteristics. A certain user may
give more attention to the genre of an item than to a movie’s
actor, but another user may be more concerned about the film’s
actor. Therefore, we take the path attention into consideration to
capture the different preferences of relations in the knowledge
graph.

3.2.4. Combination of user preferences in multiple hops
After obtaining the similarity probabilities defined in Eq. (3),

we consider how to combine the user preferences among multi-
ple hops. We define the vector okuser that reflects the user pref-
erence in the kth hop. For the triple (h, r, t) (i) in Hopkuser , o

k
user

an be computed as the sum of tail item embeddings in Hopkuser
eighted by the corresponding similarity probabilities, which is
omputed as follows.
k
user =

∑
k

piti (5)

(hi,ri,ti)∈Hopuser
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Fig. 3. The number of edge types and the number of corresponding tail node entities on two datasets, movie and book. Figure (A) depicts the statistics about edge
types and their corresponding numbers in the movie dataset. ‘‘film->language’’ denotes the linked edge starting from the head of film types to the tail of ff film’s
anguage type. Figure (B) shows the number of corresponding tail node entities of the edge with a specific type for the movie dataset. Figures (C) and (D) refer to
he book dataset.
here ti ∈ Rd is the embedding of tail ti. okuser represents a user’s k-
rder preference toward item v. The user preference information
or the item is obtained by modeling the similarity between the
tem and other items that are historically clicked by the same
ser.
In the process of user preferences propagating along the path,

ultiple layers of preference information vectors o1user , o2user
. . okuser can be obtained by repeating the above steps. Effective
nformation in okuser gradually decreases as the number of hops
ncreases. Therefore, there is a sequence of preference embed-
ings that can be modeled using a sequence-based model, such as
he time-series model. To this end, we propose using a sequential
odel LSTM to generate a single representation of the user
reference for item v by encoding the preference information
mong multiple hops. Since the LSTM has the ability to memorize
he long-term dependency in a sequence and its forget gate can
ilter some noisy information, we adopt it in our model.

The LSTM model outputs the hidden state vector hl based on
subsequence [okuser , o

k−1
user . . . . . . o

0
user ]. With the increase of k, the

reference vector in the kth hop contains more noisy information
and is at a farther distance from the user’s clicked items. There-
fore, the okuser encodes more useful information when the hop is
nearer to the final preference hidden state. Consequently, hl and
k−1
user are used to learn the hidden state of the next path, which is
efined via the following equations:

čl = tanh(wc[ok−l+1
user , hl−1] + bc) (6)

fl = σ (wf [ok−l+1
user , hl−1] + bf ) (7)

il = σ (wi[ok−l+1
user , hl−1] + bi) (8)

l = σ (wo[ok−l+1
user , wh] + bo) (9)

cl = fl ⊙ cl−1 + il ⊙ čl (10)
5

where il, ol and fl represent the input gate, output gate and
forget gate, respectively. wc , wf , wi, wo ∈ Rdh×(dh+d) are the
mapping matrices and bc , bf , bi and bo are bias vectors. čl and
cl ∈ Rdh denote the cell state and the control module for input
information, respectively. When deterring the current state of
the unit, čl can control how input information affects the current
state’s change. dh is the dimension of the hidden state. σ is the
sigmoid activation function. ⊙ is the elementwise product of two
vectors. The combination of the memory unit and the forget gate
can make it possible to memorize effective preference informa-
tion and filter noise information when the depth of propagation
increases. o0user and the vector of item v are concatenated to form
the last input of the LSTM.

3.2.5. Global vectors of items
Item embedding provides useful information to improve

knowledge graph-based recommendation accuracy in recommen-
dation systems. Knowledge graphs contain informative nodes and
edges, and each of them plays different roles to construct item
embedding. To filter the noisy information in constructing item
embedding, we take some filter strategies to capture more useful
information.

Specifically, we introduce the global vectors for word repre-
sentation by GloVe [41], which is widely used in the field of
natural language processing. As a language model, based on the
overall statistics of a term’s frequency, it can represent a word as
a vector that captures the semantic properties between words.
Semantic similarity between two words can be obtained by cal-
culating the Euclidean distance or cosine similarity of two vectors.
We then introduce how to construct the GloVe vectors for items
in a recommendation. GloVe vectors for items are constructed
based on the original corpus. First, a co-occurrence matrix is
constructed. Each element in the matrix represents the number
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f times that the word i and the context word j co-occur in a
ontext window with a particular size. The GloVe model takes
nto account the distance between words in the sliding window.
decaying weighting decay=1/d is used to calculate the weight,
hich means the farther the distance, the smaller the weight is.
Inspired by this idea, we consider that from the user’s point of

iew, two item co-occurrences in positive item lists of a user can
ndicate some common features between them. The higher co-
ccurrence time means that they share more common features,
hich may not be included in the knowledge graph. Therefore,
e define the co-occurrence numbers for two items as the fre-
uency that they are liked by the same user. In other words, the
o-occurrence number is equal to the number of users who such
s two items. To smooth the data, the number of occurrences
an be divided by the maximum number of co-occurrences. Data
moothing aims to limit the obtained co-occurrence-based metric
n the interval of [0, 1], which helps alleviate calculation bias
aused by differences in the magnitudes of values. We divided
he raw number of co-occurrences by the maximum number of
o-occurrences because the maximum number of co-occurrences
s the largest value of all the co-occurrence numbers. In this
ay, the resulting value will be in the interval of [0, 1] and will

acilitate the next calculations.

item,item2 = coclicktime/max(co_clickTime) (11)

here Xitem,item2 represents co-occurrence times of item1 and
tem2. To accumulate all the co-occurrences of a certain item and
ther items, we can sum all the Xitem,item2 with respect to the item.
e formulate this idea as follows.

item1 =

∑
item2

Xitem1,item2 (12)

here Xitem1 represents the sum of co-occurrence times of item1
and other items. Eq. (12) is used to compute all the
co-occurrences of item1 and other items. Namely, the equation
reflects the popularity of a certain item among all the items. If
another item such as is item2 co-occurs frequently with the item1,
he user preferences between item1 and item2 can be modeled.
herefore, we formulate the probability of a user who likes both
tem1 and item2 as follows.

item1,item2 = Xitem1,item2/Xitem1 (13)

here pitem1,item2 represents the probability of item2 appearing in
o-occurrence items of item1. Eq. (13) measures the probability
f co-occurrences of item1 and item2, which encodes user pref-
rences between different items and can be used for global item
epresentations.

The core idea of the GloVe model is that for word i and word
, if word k has a closer semantic relationship with the word i
ompared with the semantic similarity between word k and word
, the probability pi,k>pj,k, where the probability pi,k indicates
he probability that two items (i and k) are liked by the same
ser. Since the vector representation of the item is associated
ith the co-occurrence matrix from the view of user preference,
he obtained vector representation of items will contain the user
reference information and item information.

(vitem1, vitem3) /F (vitem2, vitem3) = pitem1,item3/pitem2,item3 (14)

here witem1witem2 and witem3 are vector representations of item1,
tem2 and item3, respectively. F represents the operation func-
ion between vectors, where we adopt the dot product operation.

For an item, each of its co-occurring items should have differ-
nt weights in determining its vector representation. The model’s
oss function is defined as the weighted mean square loss. f is
6

nondecreasing function, which satisfies f (0) = 0 and has its
aximum peak.

oss =

n∑
item1,item2=1

f (Xitem1,item2)(wT
item1witem2 + bitem1 + bitem2 − log Xitem1,item2)2

(15)

q. (15) is based on the weighted least squares regression model
sed by GloVe [41]. wT

item1witem2 + bitem1 + bitem2 −

og Xitem1,item2 is a drastic simplification of the cost function over
q. (14). f (Xitem1,item2) is a weighting function introduced into
he cost function. GloVe has been proven to be effective in
ifferent natural language processing tasks. Readers can refer
o reference [41] for more details about the approximation and
erivation of the equations.

.3. Learning algorithm

Following related works [9,37,42], we view the recommen-
ation task as a binary classification problem. A user–item pair
s labeled as 1 when the user has an interaction with the item;
therwise, a pair is labeled as 0. The first part of our loss function
s the cross-entropy loss function [37].

1 =

∑
(u,v)∈d

(
σ

(
→
uT

→
v

))yuv

.

(
1 − σ

(
→
uT

→
v

))1−yuv

(16)

here (u, v) represents any user–item pair in a given dataset d.
→v represents the item embedding vector, and −→u represents the
ser embedding vector with respect to the item v. σ is the linear
ctivation sigmoid function. yuv represents the user–item pair
abel of (u, v). The cross-entropy loss function in Eq. (16) measures
he recommendation loss of predicting the interaction label of
ach pair of item and user. In the process of optimizing the
odel, we intend to maximize the posterior probability of model
arameters based on the observations of knowledge graph g and
mplicit feedback Y. Model parameters include the embeddings
f all entities, relations between items and users, and the path
ttention.
For each triple (h, r, t) ∈ knowledge graph, there are various

ethods to obtain the embedding of entities and relations to
apture the node and structural information. The trans series
odel, such as transE and transG, regards the representations
f nodes and relationship in the knowledge graph as a machine
ranslation problem. Network embedding focuses on semantic
atching. The knowledge graph contains various nodes of differ-
nt types and edges with incompatible semantic information. To
earn information from the multirelational knowledge graph, we
se a tensor factorization model that takes the inherent structure
f relational data into account [43].

2 =

∑
(h,r,t)∈g

(
Ih,r,t − hT rt

)2
(17)

here h, t ∈ Rd denote the latent representations of the head
ntity and the tail entity, respectively, r ∈ Rd×d denotes the latent
epresentations of the edge between the head entity and the tail
ntity. Each entity has a unique latent representation. Each edge
ith different types has different vector representations. If (h,r,
t) ∈g, Ih,r,t equals 1; otherwise, Ih,r,t equals 0.

Another concern is user preferences on different edges. When
ser preferences propagate from N0

user to N1
user, some edges en-

ode more user preferences than others due to the unbalanced
istribution of edges. For example, there are various types of
dges in the movie dataset: ‘film → genre’ connects a movie and
ts genre, ’film → director’ connects a movie and its director, and
film → language’ connects a movie and its language. According
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o the statistics of the data, it can be observed that a different
ser has different attentions on the edge. This attention of users
n edges can be associated with the distribution of the tail node
f the edge.

ailuri = {t|(h, r, t) ∈ Hop1u and ri ∈ type(r)} (18)

here tailuri denotes the tail entity connected by the relation of
type ri (such as film.genre) in Hop1u.

t_typeri = set{t|(h, r, t) ∈ Hop1u (u ∈ users) and ri ∈ type (r)}

(19)

where t_typeri denotes the set of the tail types connected by the
relation of type ri in Hop1users. In this set, each element is unique
and an element with the same name will be saved only one. We
take a specific user into count. The equation can be formulated as
follows.

t_typeuri = set{t|(h, r, t) ∈ Hop1u and ri ∈ type(r)} (20)

where t_typeuri denotes the set of tail types connected by the
relation of the type ri ii in Hop1u for the user u. Based on Eqs. (18)
and (20), we can compute user preferences for a certain type of
edge as follows.

weighturi =

∑
t j∈tutype ri

⏐⏐t j⏐⏐⏐⏐tailuri⏐⏐ ∗ log

⏐⏐t j⏐⏐⏐⏐tailuri⏐⏐ (21)

aur = softmax(weightur0, . . . weighturi . . . weighturn) (22)

where weighturi denotes the user preference for the edge of type
ri based on information entropy. |t i| is the number of the ith tail
entity. To explain the motivation for this, we provide a simple
example. For two users u1 and u2, if u1 historically interacted
with movies directed by 10 directors, while u2’s number is 20, we
would consider that u1 may care more about the film director at-
tribute than u2. From another perspective, unbalanced interaction
may reflect user preferences because if the number of historically
interacted directors of u1 and u2 is the same and equal to 10 but
the distribution is unbalanced, such as [2, 2, 2, 2, 2] and [1, 1, 1,
2, 5], it is observed that they have different preferences. A more
balanced distribution implies that the user has less preference
information for this attribute. u2 focuses more on the attribute of
director than u1. To obtain user preferences for edges, we define
the third part of the loss function as:

l3 =
1

|users|

∑
u∈users

∑
ri∈R

(
attention

(
ru

)
− waur

)2 (23)

here |users| represents the number of users. wauri is defined in
q. (22). We then combine the three parts of the loss functions
or model learning.

. Experiments

.1. Experimental settings

To demonstrate the effectiveness of the proposed model, we
se two publicly available datasets MovieLens-1M [10] and DB-
ook2014. These two datasets are widely used in related tasks for
ovie recommendation and book recommendation. The knowl-
dge graph of these two datasets has been constructed by Wang
t al. [37]. We use the constructed knowledge graph to learn
he knowledge-enhanced models. In the experiments section, we
ould such as to answer the following four research questions:
RQ1: What is the performance of the proposed CIEPA model?

oes it outperform other state-of-the-art models? (See
ection 4.2)
 (
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RQ2: How does the number of hops affect the preference
propagation in our model? (See Section 4.3)

RQ3: How does the size of the ripple set in each hop affect the
model performance? (See Section 4.4)

RQ4: What is the influence of embedding dimensionality and
path attention weights for the proposed model? (See Section 4.5)

We examine the model effectiveness to answer the above four
research questions and provide in-depth analysis and discussion
of our model at the end of this section.

We compare the proposed model with the following state-of-
the-art baselines. We choose five strong baseline models. All the
compared models follow the same experimental settings for fair
comparison. The baseline models are introduced as follows.

• The NFM model [44] developed a bi-interaction layer to
combine second-order features based on a factorization ma-
chine. Tail entities of the first hop represent categorical
features of items and users, and therefore, the tail entity
embedding in the first hop is concatenated with the user ID
and item ID in the NFM model.

• The CKE model [45] introduced structural information, tex-
tual information and visual information into collaborative
filtering. In our comparison, the CKE model is combined
with collaborative filtered structural information of the
knowledge graph.

• The PER model [21] treats the knowledge graph as a hetero-
geneous information network and extracts metapath-based
features to represent the connectivity between users and
items. In our comparison, we use all item–attribute–item
features for the PER model (e.g., ‘‘movie–director–movie").

• The RippleNet model [37] views the propagation of user
preference information on the knowledge graph as ripples
and randomly constructs the triples in ripple-like hops.

• The DeepFM model [4] consists of two parts that share the
same inputs: the neural network part and the factorization
machine part. The neural network part extracts the low-
level features and the factorization machine part extracts
the high-level features.

Hyperparameters of these models are tuned by optimizing AUC
on the validation set. To control the depth of propagation, we
tune the number of hops as 2 for the MovieLens-1M and DB-
book2014 datasets. For each dataset, the ratio of the training,
evaluation, and test set is set to be 3:1:1, which follows com-
mon settings in related works. We split the dataset 10 times
into the training, validation and test set and report the average
performance over 10 test sets. The reported results are from all
the test runs. The model is evaluated by the click-through rate
(CTR) prediction. The learned model outputs the predicted click
probability for each test set. We use area under the curve (AUC)
and accuracy (ACC) as the evaluation metrics in our experiments.

4.2. Overall experimental results

To answer RQ1, we first compare our model with the baseline
odels. The experimental results of all the compared models
re evaluated by the click-through rate prediction and shown in
able 1. In the table, CIEPA-ATT and CIEPA are two versions of
he proposed models. CIEPA denotes the proposed model with
ath attention, and CIEPA-ATT denotes the proposed model with-
ut path attention. A two-tailed paired t test (p≤0.05) is con-
ucted to demonstrate the significance of performance improve-
ent. Significant improvement over the best-performed baseline

RippleNet) is indicated with an asterisk (*).
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able 1
erformance comparison by AUC and Accuracy in CTR prediction.
MODEL DBbook2014 MovieLens-1M

AUC ACC AUC ACC

NFM [44] 0.7095 0.6804 0.8668 0.7932
RippleNet [37] 0.7290 0.6620 0.9210 0.8441
DeepFM [4] 0.6759 0.6296 0.8774 0.8041
CKE [45] 0.6740 0.6350 0.7960 0.7390
PER [21] 0.6230 0.5880 0.7120 0.6670
CIEPA-ATT 0.7331* 0.6880* 0.9216 0.8478
CIEPA 0.7015 0.6537 0.9254* 0.8496*

From the results, we observe that the deep learning-based
ethods yield better results on both datasets. NFM performs bet-

er than DeepFM on the DBbook dataset in terms of AUC and ACC,
hile DeepFM outperforms NFM in the MovieLens dataset. PER
chieved relatively low performance compared with other meth-
ds. One possible reason is that the performance of PER highly
epends on the predefined metapaths, which may result in worse
esults due to the lack of flexibility. In contrast, the proposed
odel produces better results than the baseline models on both
atasets. For the two versions of the proposed models, CIEPA-ATT
chieves better results for book recommendation, while CIEPA
chieves better results for movie recommendation. The results
ndicate that path attention can reduce the recommendation per-
ormance on the book dataset. Therefore, we further examine the
easons for this finding.

We divide the users into different groups based on the dis-
ribution of the number of interacted items. The distribution of
sers is illustrated in Fig. 4. From the figure, we can see that the
ovie dataset contains 442 users out of 6050 users who rated less

han 5 items, accounting for approximately 7.3% of the total users,
hile the book datasets contains 11,589 users who rated less than
items, accounting for approximately 89.7% of the total users.
he unbalanced distribution of the number of user ratings on the
ook dataset limits the capability of our model in capturing useful
nformation in the knowledge graph. Specifically, in our model,
he preference propagating process treats the user’s historically
licked items as seed nodes. User preferences propagate from the
eed item nodes to other item attribute nodes. Compared to the
ovie dataset, the book dataset produces a more sparse knowl-
dge graph. Namely, book seed nodes have fewer outgoing links
han movie seed nodes. As a result, user preferences for certain
aths cannot be easily obtained. Therefore, path attention cannot
asily capture path preferences on the book dataset, although the
IEPA model yields better performance than the baseline models.

.3. Influence of the number of hops

To answer RQ2, in this section, we examine the influence of
the number of hops in our model. Intuitively, with the number of
hops increasing, the preference information would continuously
decrease from the seed nodes to the target nodes. Our model
adopts LSTM to encode user preference information and filter
noisy information. We compare our model with RippleNet on the
movie dataset and report the comparison performance by AUC in
Table 2. From Table 2, we observe that RippleNet and CIPEA have
a similar trend with the number of hops increasing. When we set
the number of hops as 2, both models can obtain most preference
information and yield the best AUC value. In comparison, CIEPA
can constantly capture more effective information than RippleNet
by switching the number of hops. Therefore, we set the number
of hops as 2 in our experiment.
 a
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Table 2
The results of AUC with different hop numbers.
Model/#Hop #Hop=1 # Hop =2 # Hop =3 # Hop =4

RippleNet 0.9160 0.9210 0.9150 0.9180
CIPEA 0.9212 0.9254 0.9214 0.9217

Table 3
The performance by AUC with different sizes of the ripple set.
Size of ripple set 16 32 64 96

CIPEA/movie 0.9213 0.9234 0.9214 0.9254
CIPEA-ATT/book 0.7092 0.7317 0.7323 0.7331

Table 4
The results with different dimensionalities of GloVe item embedding on the
movie dataset.
GloVe dim. AUC ACC

25 0.9084 0.8318
50 0.9168 0.8424
75 0.9169 0.8418
100 0.9112 0.8346
200 0.9216 0.8478
300 0.9254 0.8496
400 0.9208 0.8467

Table 5
The results with different dimensionalities of GloVe item embedding on the book
dataset.
GloVe dim. AUC ACC

25 0.7292 0.6783
50 0.7302 0.6824
75 0.7258 0.6844
100 0.7317 0.6790
200 0.7331 0.6880
300 0.7245 0.6856
400 0.7303 0.6815

4.4. Influence of the size of the ripple set in each hop

To answer RQ3, we vary the size of a user’s ripple set in
ach hop to further investigate the effectiveness of our model.
he results on the movie datasets are shown in Table 3. For
oth datasets, AUC increases as the size of the ripple set in each
op increases. When the size of the ripple set is equal to 96,
he performance reaches its peak. On the movie dataset, path
ttention effectively captures user preferences; namely, the key
ath with higher attention conveys more preference informa-
ion. When the ripple size increases, less weight is assigned to
he noisy information. We observe a similar trend on the book
ataset. The performance increases with the increasing size of the
ipple set and tends to flatten when the size of the ripple set is
arger than 96.

.5. Influence of the embedding dimensionality and the path atten-
ion weight

To answer RQ4, in this section, we investigate the influence of
he weight of the path attention loss and the dimensionality of
he GloVe embedding. The influence of the path attention weight
n the movie dataset is shown in Fig. 5. From the figure, we ob-
erve that CIEPA achieves better results when the path attention
eight is set to be 1e-5. One possible explanation for this finding

s that a large weight could exaggerate the path-preference infor-
ation, while a small value can assign appropriate attention on
aths. Path attention is not fit for the book dataset as discussed
bove.
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Fig. 4. User group distribution based on the number of rating items.
Fig. 5. Training weight of path attention loss.
We then examine the influence of dimensionality of GloVe
tem embedding on both datasets. The results are reported in
ables 4 and 5. From the tables, we switch the dimensionality of
loVe item embedding to obtain the best-performing parameter.
n the movie dataset, when the dimensionality is set to be 300,
e can obtain the best performance. On the book dataset, when
he dimensionality is set to be 200, we can obtain the best
erformance.

.6. Discussions

In this section, we provide further discussion and analysis
n the proposed model. Based on the experimental results, we
ind that our model outperforms other state-of-the-art models
n both datasets, which demonstrates the effectiveness of the
roposed framework in capturing user preferences. Specifically,
n the DBbook2014 dataset, the proposed CIEPA-ATT model sig-
ificantly outperforms the best-performing baseline model Rip-
leNet with an ACC improvement of 3.93%, although the path
ttention cannot yield good performance due to data sparsity.
n the MovieLens-1M dataset, the proposed CIEPA model sig-
ificantly increases the performance of RippleNet with an ACC
mprovement of 0.65%. The experimental results indicate the
roposed model can improve the recommendation performance
9

based on item embedding and path attention within multiple
hops.

According to the experimental results, we attribute the per-
formance improvement to three aspects. First, we introduce the
knowledge graph as an informative resource to enhance item
recommendation. Knowledge graphs provide extra item infor-
mation and the relationship of items and attributes for accurate
preference modeling. According to the experimental results in
Tables 2 and 3, our model can constantly capture more effective
information than other baseline models by switching the number
of hops and ripple size in the knowledge graph.

Second, we propose the path attention mechanism to cap-
ture the propagation of user preferences within the knowledge
graph based on the idea of ripple nets. Path attention assigns
appropriate weights on different knowledge paths to leverage
complete user interests based on historical behaviors. According
to the experimental results in Fig. 4, the path attention weight
can be optimized during model learning and continuously reduce
the training loss to capture more user preferences.

Third, we introduce the global item embedding as an effective
complement to embed useful item information in the final recom-
mendation model. The global item embedding decomposes the
co-occurrence matrix of coliked items to capture effective hidden
information of items. According to the experimental results in
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ables 4 and 5, we observe that the global item embedding can
onstantly provide effective information to enhance our model
nd improve the model effectiveness.
Benefiting from these aspects, our model achieves better rec-

mmendation performance in the experiments. In addition, our
ethod still has some limitations, which could be further opti-
ized in the future. As shown in the experimental results, path
ttention is highly dependent on abundant user ratings. If user
atings are sparse, such as those in the book dataset, path atten-
ion may not work well. This problem can be jointly considered
ith the cold start issue in recommender systems. To tackle this
roblem, other useful information can be employed to relieve
he negative influence, such as user social networks and codislike
nformation with respect to certain items.

In regard to the computational performance of our model,
ompared with RippleNet [37], extra computational cost mainly
omes from the path attention mechanism. In our model, path
ttention is proposed to model the unbalanced distribution of
dge types and attribute nodes in the knowledge graph. We
ompute path attention based on the number of hops and the size
f the ripple set. Therefore, the computational significance of path
ttention is linearly proportional to the number of hops and the
ize of the ripple set, which will not bring more computational
verhead than other knowledge graph-based models, such as
ippleNet. Namely, the computational performance of our model
s comparable to other state-of-the-art models.

. Conclusion and future work

In this paper, we propose a novel knowledge-enhanced rec-
mmendation framework CIEPA. The CIEPA framework incorpo-
ates the knowledge graph into a coliked co-occurrence matrix
ith path-level attention. Specifically, the learned recommen-
ation model combines the embedding-based and path-based
nowledge-aware information from two aspects. On the one
and, our model introduces item global vectors to filter noisy
nformation for refined user preferences. On the other hand,
e propose path attention to guide preference propagation and

nfer underlying user–item interaction for accurate item recom-
endation. We conduct experiments on two publicly available
atasets, and experimental results demonstrate that our model
ignificantly outperforms other state-of-the-art baseline models.
ince our framework is general, other useful information can
lso be integrated into the CIEPA framework in the future. For
xample, contents or description information of items can be
sed to enrich the item representation, which may ease the
old start problem in recommending items to new users. More-
ver, negative samples indicating that a user dislikes certain
tems can also be employed to better model user preferences in
nowledge-enhanced recommendation.
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