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Session-based recommendation intends to predict next purchased items based on anonymous behavior

sequences. Numerous economic studies have revealed that item price is a key factor influencing user pur-

chase decisions. Unfortunately, existing methods for session-based recommendation only aim at capturing

user interest preference, while ignoring user price preference. Actually, there are primarily two challenges

preventing us from accessing price preference. First, the price preference is highly associated to various item

features (i.e., category and brand), which asks us to mine price preference from heterogeneous information.

Second, price preference and interest preference are interdependent and collectively determine user choice,

necessitating that we jointly consider both price and interest preference for intent modeling. To handle above

challenges, we propose a novel approach Bi-Preference Learning Heterogeneous Hypergraph Networks (BiP-

Net) for session-based recommendation. Specifically, the customized heterogeneous hypergraph networks

with a triple-level convolution are devised to capture user price and interest preference from heterogeneous

features of items. Besides, we develop a Bi-Preference Learning schema to explore mutual relations between

price and interest preference and collectively learn these two preferences under the multi-task learning

architecture. Extensive experiments on multiple public datasets confirm the superiority of BiPNet over

competitive baselines. Additional research also supports the notion that the price is crucial for the task.
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novel triple-level convolution to aggregate information on the heterogeneous hypergraph, where the co-occurrence, intra-

type and inter-type relations among various nodes are explored simultaneously; (4) explore the mutual relations between

price and interest preference with the help of multi-task learning; (5) reveal user intent via predicting price and interest

preference collectively; (6) conduct data analysis on real-world datasets to support our motivation; (7) add new datasets

and up-to-date baselines to verify the effectiveness of the proposed model; and (8) conduct a more detailed analysis about

the approach, obtain more insights, and review more related literature.
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1 INTRODUCTION

Recommender system (RS), which is ubiquitous in the modern information age, becomes a vital
tool to alleviate information overload. RS facilitates online consumption by providing personalized
services for individuals, especially in the e-commerce websites. Conventional RS [23, 35] utilizes
user profiles and long-term behaviors to predict their future actions by assuming that the user
identification is available. However, with increasingly strict privacy policy and widespread unreg-
istered users, what the RS can access is merely the short behavior sequence of an anonymous user
(i.e., session), where these existing conventional RS models are no longer applicable. To improve
user experience in this situation, session-based recommendation (SBR) is proposed to provide
efficient recommendation for anonymous users within a limited number of interactions [16, 25, 52].

Due to its highly practical value, SBR has received widespread attention since it appeared.
Relying on the powerful learning capacity of neural networks, recent methods for SBR
model user behaviors via various kinds of neural structure, such as Recurrent Neural

networks (RNN) [16, 25], Convolutional Neural Networks (CNN) [42, 43], Attention
Networks [22, 27, 40] and Graph Neural Networks (GNN) [4, 52]. Although remarkable
performance has been achieved, the existing SBR methods are only committed to modeling the
user interest preference in terms of how much a user likes an item. Another important factor, i.e.,
the user price preference in terms of how much money a user would like to pay for the item, is
completely ignored by existing methods. Different from other item features (e.g., size, color, and
style) indirectly influencing user bahaviors, it has been validated that the price can significantly
determine whether the user would make a purchase [7, 44]. Moreover, it is purchased items
instead of favorite ones that RS should predict, because that only purchase behaviors can bring
profits to businesses and make users further interact with the system (like reviews). Therefore,
it is urgent that considering price factor in SBR for accurately predicting the user’s behaviors.
However, there are mainly two challenges to be solved when we aim to incorporate price into SBR.
First, user price preference is diverse and heavily depends on some features of items, i.e., cate-

gory and brand [44, 63]. Taking a common example, a user may buy expensive camera for work,
while she could also purchase cheap sellotape to use in daily life. This example suggests that user
price preference can dramatically change based on categories of items. Besides, some users are
willing to spend extra money on items of famous brands, which is called brand effect in econom-
ics [7]. That means item brands can also influence user price preference. Obviously, the relevant
categories and brands should be considered when we model user price preference in SBR. Under
such situation, various kinds of information will be necessary to characterize user behaviors, such
as a series of items, item prices, item categories, and item brands. Those heterogeneous information

brings intractable challenges for the existing methods such as References [4, 16, 25, 40, 52–54],
because that all of them are developed to model the single type information (i.e., item id). Thus, to
incorporate price into SBR, the first challenge is how to copywith such heterogeneous information.
Second, user price preference and interest preference are interdependent and collectively deter-

mine user choice. It is quite common that users make price-interest tradeoffs when shopping. Also,
the price elasticity is used by economists to describe the phenomenon that the money a user would
like to spend on an item fluctuates with her interest in it [1]. It indicates that price and interest
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preference influence each other and contribute to user choices together. Taking an example, it is
possible that a user buys an expensive item because of strong interest, even though the item price
is higher than what she anticipated. In this instance, the user alters her price preference because
of the influence of interest. Likewise, a user will also buy items with little interest out of their low
price (it is just what frequently happened during the promotions). Obviously, to predict user pur-
chase decisions, we have to explore themutual relations between price and interest preference and
jointly model these two preferences. However, the existing SBR methods [4, 16, 25, 40, 52–54] only
use item ID as the supervised signal to model user interest preference, while can neither explicitly
capture user price preference nor adequately handle rich dependencies between price preference
and interest preference in determining user choice. Therefore, another challenge facing us is how
to accurately model purchase intent of users under these two preferences.
For the first challenge, it is intuitive that using general heterogeneous graph to handle

heterogeneous information [18, 30]. However, the existing heterogeneous graph-based approaches
can only model pairwise (dyadic) associations [41], e.g., the relations between (category, price)
or (brand, price). In our settings, there are complex high-order relations among different nodes,
e.g., the triadic associations in <price, category, brand> jointly affect an item price semantics.
Thus, the current heterogeneous graph-based methods are ineffective in our settings. Moreover,
constrained by over-smoothing problem, heterogeneous graph-based methods are unable to
model the dependencies between distant nodes within a session [4]. Fortunately, the hypergraph
whose hyperedge can connect multiple nodes is devised recently to capture high-order data
relations with arbitrary distance [54, 64]. Adopting the merits of heterogeneous graph and
hypergraph, we propose heterogeneous hypergraph networks, which is able to capture complex
high-order dependencies among various nodes, to copy with heterogeneous information in SBR.
Specifically, the heterogeneous information we consider in the heterogeneous hypergraph

includes item ID, item price, item category and item brand that are directly relevant to user
price and interest preference. Besides, three types of hyperedges, i.e., feature hyperedge, price
hyperedge and session hyperedge, are designed to facilitate price and interest preference learning
in the heterogeneous hypergraph. Based on the constructed heterogeneous hypergraph, we
devise a triple-level convolution to learn node embeddings, where three kinds of relations among
nodes are emphasized, i.e., co-occurrence, intra-type and inter-type relations. After that, the price
and interest preferences of users are obtained by attention layers.
As to the second challenge, we should explore the mutual relations between price and inter-

est preference and take both them into account to predict user behaviors. The multi-task learning
schema is proposed to handle multiple relevant tasks jointly, where the mutual relations among
these tasks can be leveraged to improve model capability on all tasks at once [62]. Inspired by
this, we propose a bi-preference learning schema. To be specific, besides using item ID to guide the
model to learn user interest preference, the bi-preference learning schema also utilizes the price
of target item as another supervised signal to formulate user price preference. Under the schema
of multi-task learning, it can explore the mutual relations between price and interest preference
and predict both of them simultaneously. Eventually, we reveal user purchase intent based on the
learned price preference and interest preference.
All in all, to incorporate price into SBR, we propose a novel approach termed Bi-Preference

Learning Heterogeneous Hypergraph Networks (BiPNet), where the main contributions can
be summarized as follows:

—We identify and emphasize the importance of the price in influencing user behaviors and
consider both price and interest preference in SBR to offer personalized services. As far as
we know, this is the pioneer work to incorporate price into SBR.
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—We propose a novel BiPNet to improve SBR. In BiPNet, the customized heterogeneous hy-
pergraph networks are devised to handle heterogeneous information for price and interest
preference learning. We also develop a bi-preference learning schema to predict price and
interest preference simultaneously via exploring rich mutual relations between them.

—We conduct extensive experiments over multiple real-world datasets and the results show
that our proposed BiPNet outperforms existing state-of-the-art SBR approaches. Further
analysis also validates the significance of the price for SBR.

The rest of the article is organized as follows. Section 2 briefly reviews the literature most rel-
evant to our work. We then conduct data analysis on a real-world dataset to examine the factors
influencing user price preference and formulate the task in Section 3. In Section 4, we elaborate the
proposed model BiPNet. The detailed experimental settings are introduced in Section 5. Section 6
presents the experimental results. Last, in Section 7, we conclude the article and look forward to
the future work.

2 RELATED LITERATURE

Considering that this work aims to improve SBR by introducing price, proposing a customized
heterogeneous hypergraph and drawing support from multi-task learning, we briefly review the
related work from following four aspects: session-based recommendation, price-aware recommen-
dation, heterogeneous graph/hypergraph, and multi-task learning.

2.1 Session-based Recommendation

With the ability to predict user actions via limited information, session-based recommendation
has become a research hot-spot recently [29, 48]. Traditional methods use Markov Chain [38] or
Matrix Factorization [34] to mine sequential dependencies in user behavior sequences. Enlight-
ened by the Nearest-neighbor-based approaches [23], some methods calculate the item similarity
(Item-KNN [35]) or session similarity (SKNN [19]) to determine the recommended items.

As the pioneer work introducing neural networks into SBR, GRU4Rec [16] utilizes RNN to
tackle the task. Afterwards, many works improve SBR by applying RNN or its variants such as
References [15, 33]. NARM [25] introduces attention mechanism into the GRU4Rec to emphasize
the user main purpose. CSRM [47] further boosts the performance of NARM by exploring collabo-
rative information from neighboring sessions. As another typical neural structure, CNN are used
in SBR to capture user intent like Reference [43] with three-dimensional (3D) CNN, and Caser [42]
with the standard 2D CNN. Attention networks are also popular in SBR because of its capacity for
filtering out irrelevant items [22, 58, 59]. Liu et al. [27] proposed a short-term attention/memory
priority model to capture both user general interest and current intents. Adopting the cloze
objective from Natural Language Processing (NLP), BERT4Rec [40] applies deep bi-directional
self-attention to mine sequential patterns in the task. With the ability to capture pairwise patterns
of item transitions, GNN have been widely used in SBR recently [30, 32, 49]. As the first method
applying GNN in SBR, SR-GNN [52] views each session as a graph and adopts gated graph
convolution to obtain item embeddings. LESSR [4] handles two information loss issues of GNN
for SBR, i.e., lossy session encoding and ineffective long-range dependency capturing. PosRec [31]
exploits positional information to improve GNN-based SBR. Relying on the ability of hypergraph
in capturing complex high-order relations among nodes, Wang et al. [46] and Xia et al. [54]
improved SBR by adopting hypergraph architecture. To alleviate data sparsity problem, data
augmentation technique is also used to enhance model performance such as co-training [53],
coupled framework [50], random walks [6], and graph augmentation [3, 39, 56]. Moreover, some
methods aim to capture the fine-grained preference evolution of users via continuum model [13]
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or learning multi-granularity user intent [12, 57]. Considering that existing architectures of
neural network perform differently on different context, some works automatically ensemble
distinct networks to adapt to various session scenarios [2, 5]. More recently, some methods
try to incorporate auxiliary features of item to model user intent from multiple perspectives
like item category [24] and item text [17, 60]. Our earlier work CoHHN [61] emphasizes the
importance of price factor on influencing user purchase behaviors. In this work, we further extend
CoHHN by incorporating item brand, reconstructing the customized heterogeneous hypergraph
and proposing a new triple-level convolution to aggregate rich heterogeneous information.
Besides, BiPNet mines mutual relations between price and interest preference with the help of
multi-task learning, where both of item ID and price are used as supervised signals to model user
behaviors.

2.2 Price-aware Recommendation

It is obvious that price is a key factor considered by users when they are shopping. Surprisingly,
little effort has been made to incorporate it into the recommender system for performance
improvements. As pioneers considering price in recommender system, Schafer et al. [36] explored
user price sensitivity to promote online consumption. Kamishima et al. [21] integrated price
personalization into recommendation algorithms to improve its commercial viability. Wan et al.
[45] introduced consumer theories from economics into the lager-scale recommender systems for
improving the user satisfaction. Guo et al. [11] studied the impact of multi-category inter purchase
time and price on user purchase behaviors. Zheng et al. [63] modeled user price awareness by
designing a unified heterogeneous graph where item price and categories are considered. Wu
et al. [51] emphasized the item price competitiveness, which is used to measure the advantage of
the item’s price over its comparison prices, in predicting user purchase behaviors. Unfortunately,
simply regarding the price factor as an auxiliary information, most of above methods ignore the
vital role of price in user purchase decision. Besides, all of them use the item ID to guide the
model learning, while failing to explicitly extract user price preference. In addition, there is no
efforts bridging price and SBR, and we are the first to fill this gap.

2.3 Heterogeneous Graph and Hypergraph

Heterogeneous graph, also known as heterogeneous information networks, can effectively encode
heterogeneous information among multi-type nodes. Many researchers formulate available data
as heterogeneous graph and solve corresponding tasks via extracting relevant semantics on the
heterogeneous graph. For example, Hu et al. [18] aggregated node-level and type-level information
in heterogeneous graph that consists of short text, topics and entities for short text classification.
Pang et al. [30] built a heterogeneous global graph containing information of historical sessions,
item transitions and co-occurrence to capture user preference in SBR. Fan et al. [8] offered intent
recommendation via propagating heterogeneous information with a metapath-guided method.
Hypergraph is a graph structure where a hyperedge can connect with more than two nodes [64].

Since its hyperedge can contain arbitrary number of nodes, the hypergraph is able to capture high-
order relations among distinct nodes [41, 46, 54]. With this special capacity, the hypergraph has
obtained increasing attention recently. For instance, Feng et al. [9] presented a hypergraph neural
networks framework for learning data embeddings. Jiang et al. [20] utilized clustering methods
to search optimal hypergraph structures and conducted convolution operation for representation
learning. Also, some methods introduce the hypergraph structure into the recommendation task
to mine beyond-pairwise relations among items [46, 54].

Considering that there are rich heterogeneous information and complex high-order relations
in SBR, we combine the merits of both heterogeneous graph and hypergraph to build a novel
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Fig. 1. Price heatmaps for users on different categories or brands. The depth of the color means how much

money a user is will to spend on the corresponding categories/brands.

heterogeneous hypergraph architecture. The customized heterogeneous hypergraph endows the
proposed BiPNet with the capacity to extract price and interest preference of users.

2.4 Multi-task Learning

Multi-task learning aims to handle multiple relevant tasks jointly via exploring mutual relations
among these tasks [62]. It treats all tasks equally and leverages the knowledge learned from each
task to improve the model performance on different tasks. Recently, there a few works attempting
to combine recommendation task with other auxiliary tasks to improve the accuracy for user
modeling. In light of similar items with distinct IDs may reflect same user intent, Liu et al. [28]
view item text as additional signals to learn shared intent within similar items. Shalaby et al. [37]
introduced the task of predicting item category to improve the model’s predictive performance.
In this work, considering that price and interest preference influence each other and collectively
determine user choice, we draw support from multi-task learning to deduce these two preferences
simultaneously and reveal user purchase intent.

3 MOTIVATION AND PRELIMINARIES

3.1 Motivation Study

In this part, we conduct data analysis on the “Grocery and Gourmet Food” dataset from Amazon to
examine the relations between user price preference and categories/brands (Section 5.2 for details
of datasets). To clearly display characteristics of data distribution, we randomly select 20 users who
purchased at least 20 items and interacted with more than four categories/brands from the dataset.
The average price levels on each category/brand for a user is used to indicate her price preference
in the category/brand (refer to Section 3.3 for price discretization). We present the price heatmap
for users on different categories/brands at Figure 1, where the darker the color is, the more money
the user is willing to spend on corresponding categories/brands.
As shown in Figure 1(a) and (b), a user acceptable price level is extremely diverse among different

categories/brands. That is, a user can be willing to buy expensive items in some categories/brands,
while buying cheap items in others. It indicates that the item category/brand does influence the
user price preference. As a result, it is rational to consider these two factors when modeling user
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Table 1. Main Notations Used in This Article

Notation Description

I, n/|I| item set, the total number of items
xi an item
S = [x1,x2, . . . ,xm] a session withm items generated by an anonymous user
min,max min/max item price in a category
Φ(∗) cumulative distribution function of logistic distribution
round (∗) rounding operation
V and E heterogeneous node set and hyperedge set

V id , V p , V c and V b node sets with type ID, price, category and brand
pj , ck and bl a node with type price, category and brand

vidi , v
p
j , v

c
k
and vb

l
node embeddings with type ID, price, category and brand

hidi , h
p
j , h

c
k
and hb

l
updated embeddings for ID, price, category and brand nodes

avд(∗) average pooling operation
fa (∗) and fb (∗) intra-type and inter-type convolution operation
up and uI the user price preference and interest preference
ρ the number of price levels
r the repeating number of triple-level convolution
h the number of self-attention heads

price preference. Moreover, different users show different price preferences for a category/brand.
As we can see from Figure 1(a), for a certain category, some users would like to pay high prices,
while others would not. It suggests that there is divergence in user price preference, which moti-
vates us to incorporate price into SBR for offering personalized services.

3.2 Problem Statement

This work aims to improve SBR by exploring user price and interest preference from various item
features simultaneously. I is the item set, where n = |I | is the total number of items users have
purchased. In general, some features are available for an item xi ∈ I, such as item ID (x idi ), item

price(x
p
i ), item category(xci ), and item brand(xbi ). In SBR, an anonymous user have purchased m

items during a certain period, generating a session S = [x1,x2, . . . ,xm], where items are chrono-
logically ordered. Our goal is to predict the next item xm+1 the user would like to buy based on S.
The main notations used in this work are detailed in Table 1.

3.3 Price Discretization

As indicated in Reference [63], we cannot estimate whether an item is expensive or cheap by
its absolute price. Taking an example, $300 is cheap for a computer, but it could be extremely
expensive for a T-shirt. Apparently, to intuitively compare the item price from distinct categories,
we need to divide absolute price into price levels based on item category. Asnat et al. [10] found that
the logistic distribution is more compatible with price distribution on a category than commonly
used uniform distribution. The logistic probability density function is plotted in Figure 2, where
the curve is high in the middle and low on both sides. In the middle, there are more alternatives
with similar price for users to select, leading to higher user sensitivity for price, which requires us
to discretize price levels more finely. For both sides, the reverse applies. Moreover, neural models
generally achieve good performance under the situation of balanced data. Thus, the size of each
price level should be similar. In light of the aforementioned factors, as shown in Figure 2, we divide
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Fig. 2. Logistic distribution. We discretize absolute price into different price levels by equally partitioning

price probability distribution in a category.

price into ρ levels (e.g., ρ = 5) by making the probability of every interval equal. More specifically,
for an item whose absolute price is xp and [min,max] is the min/max price among its category, its
price level pi is set as follows:

pi = round (
Φ(xp ) − Φ(min)

Φ(max ) − Φ(min)
× ρ), (1)

where Φ(x ) denotes the cumulative distribution function for logistic distribution, and we can for-
mally defined Φ(x ) as follows:

Φ(x ) = P (X ≤ x ) =
1

1 + e
−π x−μ√

3δ

, (2)

where μ is expected value and δ is standard deviation both of which are estimated by maximum
likelihood in this work.

3.4 Heterogeneous Hypergraph Construction

Let G = (V ,E) be the proposed heterogeneous hypergraph that consists of node set V and hy-
peredge set E. A node xτi ∈ V has a type τ and nodes belonging to the same type τ constitute
a homogeneous node set V τ . We consider four types of information in this article, i.e., item ID
(V id ), item price (V p ), item category (V c ), and item brand (V b ), which are directly relevant to user
price and interest preference. That is, V = V id ⋃V p ⋃V c ⋃V b . A hyperedge ϵ ∈ E can contain
any number of nodes with any types. Three types of hyperedges are designed to encode rich cor-
relations among nodes: (1) a feature hyperedge contains four features of the purchased item, (2) a
price hyperedge contains the price nodes appeared in a session, and (3) a session hyperedge contains
the ID nodes within a session. Note that feature hyperedges are used to aggregate heterogeneous
information in the heterogeneous hypergraph. We utilize the price/session hyperedges to mine
user price/interest preference. If two nodes appear in any hyperedge simultaneously, then they
are defined as having adjacent relations. The leftmost part of Figure 3 shows a toy example that
illustrates how we construct the heterogeneous hypergraph.

4 THE PROPOSED APPROACH

4.1 Overview of the BiPNet

The schematic illustration of the proposed BiPNet is presented in Figure 3. On the basis of the
customized heterogeneous hypergraph, a novel triple-level convolution is designed to aggregate
heterogeneous information from three levels, i.e., co-occurrence level, intra-type level, and inter-
type level, for node embedding learning.We then apply attention layers with temporal information
to obtain price and interest preference of users. After that, a bi-preference learning schema is
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Fig. 3. Schematic illustration of the proposed BiPNet. Based on the customized heterogeneous hypergraph,

the triple-level convolution is proposed to learn node embeddings via mining co-occurrence, intra-type and

inter-type relations among various nodes. Two attention layers are then utilized to mine user price and

interest preference. Finally, the bi-preference learning schema is devised to jointly predict user price and

interest preference by exploring multual relations between these two preferences.

devised to reveal user purchase intent via predicting price and interest preference simultaneously.
In following parts, we will describe each component in detail.

4.2 Triple-level Convolution

For a target node in the heterogeneous hypergraph, there are multiple relations we should consider
to build its embedding. On the one hand, as demonstrated in most recommendation algorithms [16,
23, 34, 52], items purchased together possess similar characteristics, i.e., there are co-occurrence

relations in these items. In our settings, for a target node (e.g., p1 in Figure 3), the nodes with
same type appeared in a session (p3,p4) have similar semantics and can help model understand
its meaning. On the other hand, for the target node (p1), the adjacent nodes with other types
(e.g., {c1, c2} → p1, {b1,b2} → p1 and {i1, i2} → p1) can also provide useful information [18]. More
concretely, the nodes with a certain type (e.g., category) contain homogeneous information, where
different nodes ({c1, c2}) may have different importance to the target node, i.e., intra-type relations.
Also, different types furnish heterogeneous information to the target node (e.g., category→ price,
brand→ price or ID→ price), i.e., inter-type relations. Therefore, we propose a novel triple-level
convolution to learn node embeddings via collectively investigating these three types of relations
on the heterogeneous hypergraph, i.e., co-occurrence convolution, intra-type convolution, and inter-
type convolution.

Co-occurrence convolution. The goal of the co-occurrence convolution is to enhance the node
embeddings via exploring co-occurrence relations. Let vti ∈ Rd be the embedding of the target node
x ti with type t . The N t

i is the set of nodes whose type is t and having co-occurrence relations with
x ti . For the simplicity and efficiency, the co-occurrence convolution applies the average pooling
operation to extract co-occurrence information as follows:

ci = avд(N t
i ). (3)

Intra-type convolution. The intra-type convolution attempts to distinguish the significance of
nodes within a certain type, so as to extract relevant information of this type about the target
node. For a target node vti , the N

τ
i is the set of its adjacent nodes with the type τ . The intra-type

convolution prioritizes the nodes within N τ
i to learn the specific type embedding about vti for the
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type τ as follows:

eτi =
∑

k

αkv
τ
k , (4)

αk =
exp (vt�i Wvτ

k
)

∑
vτj ∈N τ

i
exp(vt�i Wvτj )

, (5)

where W ∈ Rd×d is the learnable parameter used to evaluate the similarity between the target
node vti and vτ

k
∈ N τ

i . The e
τ
i ∈ Rd represents the information that is needed to propagate from

type τ to vti . Considering that the nodes belonging to the same type possess homogeneous in-
formation, the intra-type convolution aggregates the information via linearly weighted addition
as in Equation (4). For the convenience of the following descriptions, we simplify the intra-type
convolution formulated by Equations (4) and (5) as follows:

eτi = fa (N
τ
i ). (6)

Inter-type convolution. The inter-type convolution aims to integrate relevant heterogeneous
information from different types into the target node. Considering that different types offer distinct
semantics to the target node, the inter-type convolution fuses the type embeddings via gating
operations as follows:

hi = vti + g1 � eτ 1i + g2 � eτ 2i + g3 � eτ 3i , (7)

g1 = tanh(ei +W1e
τ 1
i ), (8)

g2 = tanh(ei +W2e
τ 2
i ), (9)

g3 = tanh(ei +W3e
τ 3
i ), (10)

ei =Wa[v
t
i ; e

τ 1
i ; eτ 2i ; eτ 3i ], (11)

whereWa ∈ Rd×4d ,W1,W2, andW3 ∈ Rd×d are learnable parameters, � is element-wise product,
tanh(∗) is activate function, and [;] denotes concatenation. TheWa merges various heterogeneous
information into ei , which is used to guide the information fusing next. We then utilize gating
mechanism to obtain the embedding of target node hi . Noting that the semantics of hi are enriched
by rich heterogeneous information, which enables BiPNet to perceive various preferences of users.
We can simplify the inter-type convolution defined by Equations (7)–(11) as

hi = fb (v
t
i , e

τ 1
i , e

τ 2
i , e

τ 3
i ). (12)

As detailed above, the triple-level convolution conducts information aggregating on the het-
erogeneous hypergraph by exploring co-occurrence relations, intra-type relations, and inter-type
relations existing within heterogeneous nodes. Formally, the triple-level convolution updates node

embeddings with four types, i.e., vidi ∈ V id , v
p
j ∈ V p , vc

k
∈ V c and vb

l
∈ V b , as follows:

hidi = fb (v
id
i , fa (N

p
i ), fa (N

c
i ), fa (N

b
i )) + ci , (13)

h
p
j = fb (v

p
j , fa (N

id
j ), fa (N

c
j ), fa (N

b
i )) + cj , (14)

hck = fb (v
c
k , fa (N

id
k ), fa (N

p

k
), fa (N

b
k )) + ck , (15)

hbl = fb (v
b
l , fa (N

id
l ), fa (N

p

l
), fa (N

c
l )) + cl , (16)

where hidi , h
p
j , h

c
k
, and hb

l
∈ Rd are updated embeddings with type of ID, price, category, and brand,

respectively. With repeating the triple-level convolution r times, we can handle heterogeneous
information to model user price and interest preference.
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4.3 Preference Mining

After obtaining node embeddings, we further mine a user price and interest preference exposed in
a session to predict her future behaviors.

Price preference mining. Intuitively, the price preference of a user is hidden in the item price
within the session. Therefore, we mine user price preference based on price hyperedge, i.e., price

sequence [h
p
1 , h

p
2 , h

p
3 , . . . , h

p
m]. Given that the user price preferencemay change alonewith time, we

first introduce temporal information into the price embedding to encode the dynamics. Specifically,
the reversed position embeddings [49, 54] is used to represent the temporal information, i.e., posi ∈
R
d . We then integrate the price embedding with position embedding as follows:

h∗i = tanh(Wp[h
p
i ; posi ] + bp ), (17)

where Wp ∈ Rd×2d and bp ∈ Rd are learnable parameters. h∗i ∈ Rd is the modified embedding of
price node whose semantics are enriched by temporal information. Afterwards, considering that
the self-attention mechanism is good at modeling transition relations within a sequence for seman-
tics capturing [22, 40, 55], we employ multi-head self-attention to extract user price preference as
follows:

Ep = [h∗1; h
∗
2; . . . ; h

∗
m], (18)

headi = Attention(W
Q
i Ep ,W

K
i Ep ,W

V
i Ep ), (19)

Sp = [head1;head2; . . . ;headh], (20)

where W
Q
i ,W

K
i , and WV

i ∈ R
d
h
×d are learnable parameters that are used to convert the input

to query, key, and value space, respectively, and h is the number of self-attention heads. After
processing the price sequence through multi-head self-attention, we use the hidden state Sp to

represent a user price preference, i.e., ûp ∈ Rd , as follows:
ûp = S

(m)
p . (21)

Interest preference mining. We rely on the session hyperedge, i.e., item ID sequence
[hid1 , h

id
2 , h

id
3 , . . . h

id
m ], to mine user interest preference, since it is the items a user has bought that

express her interest [4, 25, 54]. The user interest preference always dynamically changes according
to time [48, 54, 58], so we also use the position embeddings (posi ) to enhance item ID embeddings
as follows:

v∗i = tanh(Wf [h
id
i ; posi ] + bf ), (22)

where Wf ∈ Rd×2d and bf ∈ Rd are learnable parameters. As defined by Equation (22), the ith

item in a session is represented by v∗i ∈ Rd . Following the common method to formulate user
interest preference [27, 52], we define the interest preference of a user as follows:

ûI =

m∑

i=1

βih
id
i , (23)

βi = zσ (A1v
∗
i + A2v̄

∗ + b), (24)

where A1, A2 ∈ Rd×d , and b ∈ Rd are learnable parameters, zT ∈ Rd is the attention matrix used
to determine the importance of an item within the session. The v̄∗ = 1

m

∑m
i=1 v

∗
i is the average

embeddings of all item ID within the session, which is utilized to evaluate the contribution of
various items to user interest preference. Consequently, the user interest preference is represented
as ûI ∈ Rd .
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4.4 Bi-preference Learning Schema

As discussed before, both price preference and interest preference are indispensable in SBR. There
exists rich mutual relations between these two preferences, leading to their joint determination for
user purchase decisions. The multi-task learning mechanism can enhance the model capacity by
leveraging themutual information amongmultiple relevant tasks [62]. Inspired by this, we develop
a bi-preference learning schema under the multi-task learning architecture to collectively predict
price and interest preference. We first enrich the semantics of price preference ûp and interest
preference ûI as follows:

up = rp ∗ ûp + (1 − rp) ∗ ûI, (25)

uI = rI ∗ ûI + (1 − rI) ∗ ûp, (26)

rp = σ (W
p
1 (ûp) +W

p
2 (m)), (27)

rI = σ (WI
1 (ûI) +W

I
2 (m)), (28)

m = tanh(W
pi
1 (ûp) +W

pi
2 (ûI) + bpi ), (29)

where W
pi
∗ , WP∗ , WI∗ ∈ Rd×d , and bpi ∈ Rd are learnable parameters. The m ∈ Rd mergers the

price and interest preferences to guide the fusion of these two kinds of information next. Refer-
ring to the gating mechanism [16], we set the “remember gate,” i.e., rp/rI ∈ Rd , to determine the
degree of the price/interest information needed to retain when merging these two preferences. Af-
ter that, we further enhance the representations of these two preferences (up and uI) by exploring
mutual relations between them with the help of multi-task learning where user price preference
and interest preference are deduced simultaneously.

Interest preference prediction.As common practices in previous works [4, 12, 16, 25, 40, 52, 53],
we can formulate the task of user interest preference prediction based on user interest embedding
uI and item ID embedding vidi . Formally, we predict user interest preference based on uI and vidi
as follows:

yIi = so f tmax (u�I v
id
i ), (30)

LI = −
n∑

j=1

pIj log(y
I
j ), (31)

where yIi is predicted probability of item xi to be liked by the user, pI is ground-truth distribution
of item ID, and LI is the loss of interest preference prediction.

Price preference prediction. Both price and interest preferences play an important role in deter-
mining user choice. Thus, different from existing works [4, 12, 25, 52] that only take user interest
preference into consideration, BiPNet emphasizes the significance of user price preference. To be
specific, besides predicting user interest, BiPNet also introduces the item price as extra signals to
formulate the task of price preference prediction. Given the learned representation of user price

preference up and item price v
p
i , we can utilize the price level of next purchased item to formulate

the price preference prediction task as follows:

y
p
i = so f tmax (u�p v

p
i ), (32)

Lp = −
n∑

j=1

p
p
j log(y

p
j ), (33)

where y
p
i is predicted probability of item price level, pp is ground-truth price level distribution,

and Lp is the loss of price preference prediction.
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4.5 Model Training and Inferring

Training phase. At training phase, we explore rich mutual relations between price and interest
preference by deducing these two preferences simultaneously. Concretely, we jointly consider the
tasks of price preference prediction and interest preference prediction to reveal user purchase
intent as follows:

L = Lp + LI . (34)

Note that, different from common paradigm of multi-task learning that balances the importance
of different tasks with a constant, we directly add losses of these two tasks as final loss. It implies
that we view the price and interest preference to be equally crucial in affecting user behaviors.

Inferring phase. As discussed in former sections, a user purchase behaviors is determined by
both her price preference and interest preference on an item. Thus, at inferring phase, we should
consider these preferences collectively. Based on the learned user preferences (up and uI) and item

features (v
p
i and vidi ), the purchased probability of an item can be calculated as follows:

yi = so f tmax (u�p v
p
i + u

�
I v

id
i ), (35)

where the yi represents the probability the user buys item xi .

5 EXPERIMENTAL SETTINGS

5.1 Research Questions

To examine BiPNet’s performance in SBR, we conduct a number of experiments on three public
real-world datasets. Specifically, we aim to answer following research questions:

—RQ1: Does the proposed BiPNet achieve state-of-the-art performance compared with com-
petitive SBR baselines? (Section 6.1)

—RQ2: Does each design choice contribute positively to the performance of the proposed
BiPNet? (Sections 6.2–6.6)

—RQ3: How does the proposed BiPNet perform under different price levels? (Section 6.7)
—RQ4:What’s the performance of SBR under various session length? (Section 6.8)
—RQ5: How does the key hyper-parameters influence BiPNet? (Section 6.9)
—RQ6: How does various information influence BiPNet’s complexity? (Section 6.10)

5.2 Datasets and Preprocessing

We use following three public real-world datasets in this work:

— Cosmetics,1 as a public dataset in kaggle platform, traces user actions in an online cosmetics
shop. The records of a month (October 2019) are used in this work, where we choose the
interactions with type “purchase” and “add_to_cart” to formulate user purchase behaviors.

— Amazon2 records rich characteristics of users and items from the popular e-commerce web-
site Amazon [14]. We select two representative sub-datasets “Grocery and Gourmet Food”
(Grocery) and “Toys and Games” (Toys) in this work. To simulate the scenario of SBR, the
user behaviors happened within one day are formulated as a session.

As the common settings in SBR [4, 25, 52–54], we delete the sessions that only contain one item
in all datasets. To guarantee data quality [63], we apply 10-core settings to filter out data, where
each item must appear at least 10 times and each price level/category/brand must contain at least

1https://www.kaggle.com/mkechinov/ecommerce-events-history-in-cosmetics-shop
2http://jmcauley.ucsd.edu/data/amazon/
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Table 2. Statistics of Datasets

Datasets Cosmetics Grocery Toys

#item 13,026 6,230 18,979
#price level 10 5 5
#category 226 550 430
#brand 148 1,306 1,429

#interaction 654,947 365,415 714,770
#session 109,251 153,383 287,733
avg.length 5.99 2.38 2.48

10 items. That is, BiPNet jointly explores item ID, price, category and brand to reveal user intents.
We define the last item in a session as the ground truth and use the remaining actions to model user
behaviors. The earliest 70% sessions formulate the training set. And the next 20% of sessions are
used as validation set to determine the hyper-parameters of BiPNet and baselines. The remaining
10% are used as test set to evaluate the model performance. Table 2 presents the detailed statistics
of all datasets.

5.3 Evaluation Metrics

To evaluate the performance of BiPNet and all baselines, we employ two widely used metrics
Prec@k and MRR@k:

— Prec@k: Precision evaluates whether the ground-truth item is in the recommendation list.
More specifically, Prec@k measures the proportion of cases where the ground-truth item is
within the top-k recommendation list.

—MRR@k: Mean Reciprocal Rank considers the position of the ground-truth item in the rec-
ommendation list. Formally, MRR@k is the mean of the reciprocal rankings of ground-truth
item in the list. If the rank is more than k, then the reciprocal rank is manually set to zero.

Note that, Prec@k does not take the item’s actual rank into account as long as it is among the
recommendation list. In contrast, the item rank is taken into consideration by MRR@k, which is
significantwhen the recommended ordermatters. In addition, for both Prec@k andMRR@k, larger
numbers indicate better model performance. According to conventional settings [4, 25, 40, 53], the
k is set as 10 and 20 in this work.

5.4 Comparison Methods

Following competitive methods are adopted as baselines to examine the performance of the pro-
posed BiPNet:

— S-POP recommends the most popular items within the current session.
— SKNN evaluates the similarity between current session and past sessions to determine the
recommended items.

— GRU4Rec [16] captures sequential relations within the session via GRU.
— NARM [25] improves GRU4Rec by introducing attention mechanism to mine user main in-
tention.

— BERT4Rec [40] uses a bidirectional self-attention to model user sequential behaviors.
— SR-GNN [52] views each session as a graph and applies graph neural networks on the graph
to model pairwise relations between items.

— SR-GNN+ modifies SR-GNN by adding the embeddings of item price, category and brand as
inputs to examine the effect of side information on SBR.
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— LESSR [4] tackles lossy session encoding and ineffective long range dependency of GNN for
SBR.

— S2-DHCN [54] introduces hypergraph architecture into SBR and further improve perfor-
mance by contrastive learning.

— COTREC [53] explores internal and external connectivity of sessions with self-supervised
learning and co-training.

—MSGIFSR [12] captures user fine-grained preferences evolution by modeling multi-
granularity consecutive user intent.

—MGS [24] exploits item attribute information (e.g., categories and brands) for accurate pref-
erences learning.

—DGNN [26] mines explicit and implicit item relations with GNN to improve SBR.
— CoHHN [61] is a preliminary version of this article, which extracts user price preference
from item price and category.

5.5 Implementation Details

For fair comparison, we fix embedding size at 128 for all neural methods. We determine other
hyper-parameters of BiPNet and baselines by grid search based on their performance at Prec@20
on validation set.3 As to the main hyper-parameters of BiPNet, we investigate the number of price
levels ρ in {2, 5, 10, 50, 100, 200}, the repeating number of triple-level convolution r in {1, 2, 3, 4}
and the number of self-attention heads h in {1, 4, 8, 16, 32}. Besides, we set the mini-batch size at
100 and optimize the model via Adamwhere the initial learning rate is 0.001. To simulate the actual
scenarios of SBR as in References [4, 25, 52], the length of session is cut off at 19. We run every
model five times with random initial seeds and use the average performance on text sets as final
results for all approaches. The source codes are available online.4

6 EXPERIMENTS

6.1 Overall Performance (RQ1)

Table 3 presents the overall performance of all methods on three datasets, where we can get fol-
lowing insights:
First, baselines’ performance exhibits considerable discrepancy across distinct datasets. For ex-

ample, MGS achieves best results among baselines in Cosmetics, while its performance in Grocery
and Toys is unsatisfactory. We argue that the inconsistency of baselines’ performance comes from
that all baselines only focus on modeling user interest preference. All of them ignore that the price
preference depending on various information is also critical when users make purchase decisions.
In fact, users focus on different preferences on different datasets, e.g., users possess different price
sensitivity on different context. Thus, constrained by considering only single kind user preference,
baselines are unable to achieve good performance across various context.
Second, drawing support from attention mechanism to distinguish the importance of items

within sessions, NARM and BERT4Rec perform much better than GRU4Rec. Nevertheless, the
structure of BERT4Rec does not achieve amazing performance in the task of SBR as it has done in
the field of NLP. We speculate the reason for this is that the BERT structure is good at capturing
distant transition patterns among tokens (i.e., items in SBR) in a sequence. As suggested in
Table 2, the session usually contains a few items, i.e., the average number of items existing

3The settings of neural baseline methods are as follows: NARM (1 GRU layer with 128 hidden units), BERT4Rec (four

heads and two layers), LESSR (four layers), S2-DHCN (three layers), COTREC (three layers), MSGIFSR (two layers and

three intent granularity levels), MGS (three samples in mirror graph), and DGNN (two layers).
4https://github.com/Zhang-xiaokun/BiPNet
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Table 3. Overall Performance on Three Datasets

Method
Cosmetics Grocery Toys

Prec@10 MRR@10 Prec@10 MRR@10 Prec@10 MRR@10

S-POP 38.05 28.09 38.19 33.31 25.09 24.83

SKNN 42.52 31.22 67.87 47.42 45.49 32.16

GRU4Rec 21.29 ± 0.18 15.61 ± 0.13 59.38 ± 0.19 53.78 ± 0.14 35.99 ± 0.13 28.44 ± 0.10

NARM 43.99 ± 0.09 34.18 ± 0.11 69.68 ± 0.13 62.54 ± 0.08 45.92 ± 0.11 37.43 ± 0.09

BERT4Rec 40.95 ± 0.08 24.43 ± 0.07 68.60 ± 0.18 61.29 ± 0.14 43.76 ± 0.17 35.40 ± 0.14

SR-GNN 45.87 ± 0.10 34.52 ± 0.05 69.89 ± 0.14 62.78 ± 0.11 46.76 ± 0.15 37.76 ± 0.09

SR-GNN+ 46.03 ± 0.12 34.49 ± 0.11 69.97 ± 0.12 62.67 ± 0.15 46.93 ± 0.11 37.81 ± 0.13

LESSR 41.98 ± 0.09 26.07 ± 0.11 68.22 ± 0.12 60.99 ± 0.16 43.80 ± 0.09 35.45 ± 0.11

S2-DHCN 42.87 ± 0.08 33.19 ± 0.12 61.41 ± 0.13 50.58 ± 0.11 38.67 ± 0.12 30.33 ± 0.08

COTREC 46.30 ± 0.06 34.72 ± 0.08 70.03 ± 0.08 51.29 ± 0.16 47.49 ± 0.10 33.59 ± 0.13

MSGIFSR 43.70 ± 0.11 26.51 ± 0.06 69.38 ± 0.13 61.64 ± 0.09 45.80 ± 0.16 36.44 ± 0.09

MGS 47.01 ± 0.15 34.84 ± 0.09 69.92 ± 0.12 62.28 ± 0.18 47.00 ± 0.08 37.65 ± 0.11

DGNN 44.47 ± 0.18 33.86 ± 0.12 69.55 ± 0.15 62.63 ± 0.17 45.30 ± 0.13 37.59 ± 0.14

CoHHN 47.95 ± 0.12 35.02 ± 0.08 70.54 ± 0.11 63.16 ± 0.10 47.89 ± 0.14 38.54 ± 0.08

BiPNet 48.64∗± 0.14 35.48∗± 0.11 71.12∗± 0.10 63.51∗± 0.08 48.48∗± 0.09 38.71∗± 0.07

Method
Cosmetics Grocery Toys

Prec@20 MRR@20 Prec@20 MRR@20 Prec@20 MRR@20

S-POP 40.75 30.22 41.30 33.52 25.80 24.88

SKNN 49.83 32.36 70.07 47.55 48.63 32.38

GRU4Rec 23.88 ± 0.16 15.79 ± 0.17 62.53 ± 0.15 54.03 ± 0.14 38.24 ± 0.18 29.01 ± 0.13

NARM 48.52 ± 0.17 34.50 ± 0.09 71.54 ± 0.12 62.81 ± 0.10 48.42 ± 0.13 37.81 ± 0.08

BERT4Rec 49.40 ± 0.07 25.01 ± 0.06 71.01 ± 0.16 61.45 ± 0.14 47.44 ± 0.14 35.66 ± 0.10

SR-GNN 50.75 ± 0.16 34.78 ± 0.13 71.68 ± 0.14 63.03 ± 0.11 49.48 ± 0.11 38.05 ± 0.08

SR-GNN+ 50.98 ± 0.12 34.90 ± 0.17 71.93 ± 0.16 63.11 ± 0.13 49.71 ± 0.09 37.92 ± 0.11

LESSR 50.18 ± 0.07 26.64 ± 0.11 70.24 ± 0.09 61.14 ± 0.08 47.10 ± 0.12 35.67 ± 0.07

S2-DHCN 49.79 ± 0.15 33.33 ± 0.09 63.28 ± 0.17 50.87 ± 0.12 41.18 ± 0.09 30.61 ± 0.10

COTREC 51.41 ± 0.13 34.93 ± 0.07 72.17 ± 0.12 51.43 ± 0.15 50.17 ± 0.12 33.89 ± 0.08

MSGIFSR 50.15 ± 0.12 27.10 ± 0.08 71.71 ± 0.09 61.80 ± 0.07 49.69 ± 0.14 36.71 ± 0.11

MGS 52.28 ± 0.17 35.16 ± 0.11 71.87 ± 0.14 62.53 ± 0.11 50.02 ± 0.12 37.99 ± 0.09

DGNN 49.88 ± 0.14 34.17 ± 0.09 71.29 ± 0.13 62.85 ± 0.14 48.45 ± 0.09 38.10 ± 0.10

CoHHN 54.50 ± 0.16 35.42 ± 0.12 72.87 ± 0.14 63.35 ± 0.12 51.43 ± 0.15 38.81 ± 0.11

BiPNet 55.28∗ ± 0.12 35.94∗± 0.08 73.66∗± 0.13 63.69∗± 0.09 52.66∗± 0.11 39.02∗± 0.07

The results (%) produced by the best baseline and the best performer in each column are underlined

and boldfaced respectively. Statistical significance of pairwise differences of BiPNet against the best

baseline (∗) is determined by the t-test (p < 0.01).

in a session is 5.99, 2.38, and 2.48 on Cosmetics, Grocery, and Toys, respectively. Therefore,
BERT4Rec cannot unleash its strength in such short sequences, leading to its unsurprising
performance.
Third, SR-GNN and LESSR obtain remarkable results by utilizing GNN to capture pairwise

relations between adjacent items. Especially in the terms of MRR on Grocery and Toys, SR-GNN
achieves strong performance among baselines. However, unable to model high-order relations
existing among items, the overall performance of SR-GNN and LESSR is not optimal. Exploring
internal and external connectivity of sessions, COTREC achieves competitive performance in
terms of Precision metric. It builds graphs from distinct views, i.e., item view and session view, to
augment session data. The introduction of two views enables COTREC to model beyond pairwise
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patterns within sessions, which enhances its performance. Similar as CORTEC, DGNN explores
explicit and implicit item correlations by building distinct item graphs for complex relation
modeling. In contrast, S2-DHCN captures high-order relations among items via hypergraph
convolutional networks. MGS performs admirably among baselines, especially in the Cosmetics.
We argue that the introduction of auxiliary attribute information, i.e., categories and brands,
endows MGS with the ability to finely-grained mine user interest, leading to its impressive
performance. In addition, SR-GNN+ generally outperforms SR-GNN, which suggests that consid-
ering side information can improve SBR. Besides, the modified SR-GNN+ is still defeated by the
proposed BiPNet, which customizes model structures for user price preference understanding.
It verifies the unique effectiveness of the proposed BiPNet on modeling user price preference in
SBR.
Finally, our proposed BiPNet achieves consistent best performance on all metrics in all datasets.

Concretely, compared with the best baselines, the relative improvement of BiPNet at Prec@20
and MRR@20 is around 5.74% and 2.22% on Cosmetics, 2.06% and 0.92% on Grocery, and 4.96%
and 2.41% on Toys. We believe that the superiority of BiPNet mainly comes from (1) it considers
the price preference when predicting user purchase behaviors and (2) it collectively emphasizes
the importance of both price and interest preference on determining user choices. In BiPNet, a
customized heterogeneous hypergraph with a novel triple-level convolution is devised to capture
price and interest preference of users from heterogeneous information. Besides, a bi-preference
learning schema is proposed to model user intent via deducing price and interest preference si-
multaneously. Based on above factors, our model is able to offer satisfactory personalized services.
In addition, BiPNet outperforms our previous method CoHHN. It demonstrates that (1) it is ra-
tionale to incorporate item brands to model user price preference, (2) the triple-level convolution
contributes to obtaining expressive embeddings, and (3) the bi-preference learning schema is able
to accurately reveal user purchase intent.

6.2 The Effect of Price Information (RQ2)

The main contribution of our proposed BiPNet is that it considers price information in SBR and re-
gards the price preference as important as interest preference in determining user purchase behav-
iors. We remove the price information in the BiPNet to build a variant named BiPNet-p. Moreover,
we only retain the price information to learn the node embeddings in the triple-level convolution,
while not deliberately mining user price preference subsequently. We name this variant as BiPNet-
pp. In addition, to further investigate the utility of price information in SBR, we incorporate item
price into two representative baselines NARM and SR-GNN to formulate NARM+p and SR-GNN+p.
Specifically, NARM+p and SR-GNN+p view the addition of item ID and price embeddings as
inputs.
From Table 4, we can observe that (1) the BiPNet-pp achieves better performance than BiPNet-p

in all cases. By utilizing item price information for updating item embeddings, the BiPNet-pp is
able to perceive user price sensitivity, which makes it perform better than BiPNet-p. It suggests
that considering price contributes to understanding user intent, thus increasing the recommen-
dation accuracy. It is also in accord with reality that the price is an important factor for users to
consider when shopping. (2) The BiPNet outperforms BiPNet-pp in a large margin, which indicates
that we should view the price as a critical factor instead of accessory one when modeling user be-
haviors. It also verifies our point of view that the user price preference plays an significant role
in determining user choices and we should view the price preference as important as interest one
to provide satisfactory personalized services. (3) Generally, the baseline methods considering item
price outperform its counterparts without, i.e., NARM+p vs. NARM and SR-GNN+p vs. SR-GNN.
It highlights once more that taking the price information into account can improve SBR.
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Table 4. The Effect of Price Information

Methods
Cosmetics Grocery Toys

Prec@20 MRR@20 Prec@20 MRR@20 Prec@20 MRR@20

NARM 48.52 34.50 71.54 62.81 48.42 37.81
NARM+p 48.86 34.69 71.79 62.95 48.28 37.93
SR-GNN 50.75 34.78 71.68 63.03 49.48 38.05

SR-GNN+p 50.86 34.97 71.84 62.97 49.63 38.12

MGS 52.28 35.16 71.87 62.53 50.02 37.99
CoHHN 54.50 35.42 72.87 63.35 51.43 38.81
BiPNet-p 54.38 35.12 72.89 62.61 51.79 37.65
BiPNet-pp 54.85 35.68 73.36 62.80 52.25 38.03
BiPNet 55.28∗ 35.94∗ 73.66∗ 63.69∗ 52.66∗ 39.02∗

Fig. 4. The effect of the price discretization.

6.3 The Effect of Price Discretization (RQ2)

As discussed in Section 3.3, to compare the degree of price across various categories, we divide
absolute price into price levels. Different from common practice where item price levels are simply
defined by uniform quantization, we find that the price distribution tends to be logistic distribution
and perform price discretization via equally partitioning the logistic probability distribution. The
BiPNetuni obtains the price levels by uniform quantization like in Reference [63], where pi =

	 xp−min

max−min
× ρ
.

Figure 4 presents the results of MGS, CoHHN, BiPNetuni , and BiPNet in terms of Prec@20 and
MRR@20 on all datasets. BiPNet achieves better performance than BiPNetuni , which indicates
the superiority of our proposed method for price discretization. We conjecture the reasons for the
good performance are (1) the price distribution is more compatible with logistic distribution rather
than uniform one, and (2) equal probability interval makes the price reasonably arranged in each
price level and enables themodel to finely perceive price preference of users. In addition, BiPNetuni
outperformsMGS by a large margin, which proves the benefits of introducing price into SBR again.

6.4 The Influence of Heterogeneous Information (RQ2)

The user price preference varies greatly according to item features, e.g., category and brand.
Therefore, besides item price, we introduce extra information into our BiPNet to facilitate price
preference modeling. In this part, we zoom into each type information to examine its influence
on BiPNet’s performance. The ablation results are shown in Table 5, where “p,” “c,” and “b” mean
price, category, and brand information, respectively. We can get following insights from Table 5:
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Table 5. The Influence of Heterogeneous Information

methods
Cosmetics Grocery Toys

Prec@20 MRR@20 Prec@20 MRR@20 Prec@20 MRR@20

(a) w/o p 54.38 35.12 72.89 62.61 51.79 37.65
(b) w/o c 54.43 35.45 73.21 63.05 52.18 38.72
(c) w/o b 54.74 35.67 72.93 63.07 51.90 38.80
(d) w/o pc 53.01 35.09 73.16 62.68 52.19 37.66
(e) w/o pb 54.54 35.56 73.03 62.55 51.96 37.45
(f) w/o cb 54.27 35.41 72.18 62.81 51.11 38.63
(g) w/o pcb 52.15 32.67 71.87 61.63 50.94 36.84
BiPNet 55.28∗ 35.94∗ 73.66∗ 63.69∗ 52.66∗ 39.02∗

(1) The variant (g) without incorporating any extra information obtains the worst performance.
It proves that considering extra features in SBR does contribute to revealing user intent, increasing
the prediction accuracy. (2) Except the BiPNet, there is no variants consistently performing well
on all cases. It indicates that the user behaviors present complexity and are influenced by multiple
item features. Going further, each type of information we consider in the model has unique impact
on user decisions in different context. (3) In general, the variants incorporating price information
perform better than the variants do not, e.g., variants ((b) and (c)) against (a). Especially, variant
(f) that only considers item price achieves overwhelming superiority over variant (g) that does
not incorporate any side information. It demonstrates again that price is indeed a crucial factor in
determining user behaviors and taking it into account brings significant improvements for SBR.
(4) The variant only containing price while ignoring other factors performs worse than variants
considering price and related features, e.g., variant (f) is defeated by variant ((b) and (c)). It verifies
our hypothesis that the user price preference is related to different item features. Thus, only in-
corporating price information without considering related features cannot accurately extract price
preference of users. (5) BiPNet achieves best performance in all cases, which demonstrates that the
proposed model can handle the heterogeneous information in SBR, leading to good understanding
of user behaviors.

6.5 The Effect of Triple-level Convolution (RQ2)

Considering that there are mainly three kinds of relations among heterogeneous nodes, i.e., co-
occurrence relations, intra-type relations, and inter-type relations, we propose a novel triple-level
convolution to aggregate rich information in the heterogeneous hypergraph for node representa-
tion learning. To demonstrate the effectiveness of this design choice, we replace the triple-level
convolution with commonly used GCN like in Reference [63] to formulate the variant BiPNetдcn .
That is, for a target node, BiPNetдcn obtains its embedding by linearly aggregating embeddings
of its adjacent nodes without regard to distinct relations among them. Moreover, compared with
CoHHN, BiPNet further enhances the node representation learning by performing co-occurrence
convolution. To examine its utility, we discard co-occurrence convolution from BiPNet and obtain
a variant BiPNet-co.
As presented in Figure 5, BiPNet performs much better than BiPNetдcn in both metrics on all

datasets, which shows the superiority of the proposed triple-level convolution in representation
learning under such complex heterogeneous situation. We believe its superiority comes from that
the triple-level convolution finely distinguishes distinct relations existing among various nodes
and designs customized method to extract meaningful information for every relation. It endows
the BiPNet with the capacity to obtain accurate node embeddings from rich heterogeneous

ACM Transactions on Information Systems, Vol. 42, No. 3, Article 68. Publication date: December 2023.



68:20 X. Zhang et al.

Fig. 5. The effect of triple-level convolution.

Table 6. The Effect of Bi-preference Learning Schema

methods
Cosmetics Grocery Toys

Prec@20 MRR@20 Prec@20 MRR@20 Prec@20 MRR@20

MGS 52.28 35.16 71.87 62.53 50.02 37.99
CoHHN 54.50 35.42 72.87 63.35 51.43 38.81

BiPNet-BiP 54.76 35.43 73.21 62.80 51.86 38.41
BiPNetCE 54.99 35.74 73.41 62.52 52.38 38.53
BiPNet 55.28∗ 35.94∗ 73.66∗ 63.69∗ 52.66∗ 39.02∗

information, thus clearly revealing user intent. Besides, BiPNetдcn considering item price, cate-
gories, and brands generally performs better than MGS incorporating item categories and brands
(except on MRR@20 in Cosmetics), which demonstrates the significance of price in influencing
user behaviors in SBR again. In addition, BiPNet achieves better performance than BiPNet-co,
which verifies the effectiveness of co-occurrence convolution in BiPNet. It is intuitive, since nodes
with co-occurrence relations possess similar semantics that can contribute to learning meaningful
node embeddings.

6.6 The Effect of Bi-preference Learning Schema (RQ2)

As stated in former sections, a user often makes price-interest tradeoff when she shops online. Ob-
viously, there are complex mutual relations between user price preference and interest preference.
Both price and interest preference are indispensable in SBR and they collectively determine user
choices. To accurately capture these two preferences, we propose a bi-preference learning schema
under the multi-task learning architecture. To validate the effectiveness of the proposed schema,
we remove it from the model to build a variant BiPNet-BiP. The BiPNet-BiP directly applies the
price ûp and interest preference ûI into Equation (35) to formulate the recommendation list. Besides,
we replace themulti-task learning paradigmwith commonly used cross-entropy loss [24, 25, 52, 61]
to formulate BiPNetCE . That is, BiPNetCE applies single loss based on Equation (35) for model
training while failing to incorporate extra signals to collectively deduce user price and interest
preference.
As shown in Table 6, BiPNet outperforms BiPNet-BiP in terms of Prec@20 and MRR@20 in all

datasets, which indicates the effectiveness of the proposed bi-preference learning schema for the
task. It also suggests that there exists complex mutual relations in price and interest preference.
The bi-preference learning schema can explore the mutual relations between price and interest
preference, leading to BiPNet’s good performance. Moreover, BiPNetCE is defeated by BiPNet,
which demonstrates the rationale and necessity of the multi-task learning paradigm in our settings.
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Fig. 6. Performance under different price levels.

With the help of the multi-task learning architecture, the proposed BiPNet is able to accurately
deduce user price and interest preference, contributing to its prediction for user behaviors. In
addition, both BiPNet-BiP and BiPNetCE achieve much better performance than MGS, especially
in terms of Prec@20. We believe that the good performance comes from their modeling for price
preference, which proves the significance of taking item price into account once more in SBR.

6.7 Performance under Different Price Levels (RQ3)

The former sections have indicated that both price and interest preference contribute to predicting
user purchase behaviors. Zooming in each preference, nevertheless, users present great behavioral
discrepancy. With possessing distinct tastes, there are high personalization in interest preference
for different users. For example, some users like T-shirts with round neck, while some others may
prefer polo shirt. As to price preference, in contrast, most users tend to prefer items with low
price. This is straightforward to understand, since people always want to spend as little money as
possible to get desired items. Thus, we could improve the overall performance by blindly providing
users with cheap items. However, such a move will cause decline of business revenue given that
expensive items always offer huge profits. Therefore, we conduct experiments under different price
levels to examine the performance of the proposed BiPNet and competitive baseline MGS. Figure 6
plots their performance patterns on all datasets in terms of Prec@20 and MRR@20, where we can
get following observations:
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On the one hand, BiPNet outperforms MGS on all cases in all datasets. It indicates that our
BiPNet can understand user needs in different price levels and provide accurate recommendation
accordingly. In other words, BiPNet can not only improve user satisfaction but also increase the
income of business. We believe that this attribute of the BiPNet can promote the benign devel-
opment of e-commerce. On the other hand, models’ performance patterns show different trends
in distinct datasets. More specifically, in Cosmetics and Toys, models perform better in low (e.g.,
3 in Cosmetics and 2 in Toys) and high (e.g., 8, 9 in Cosmetics and 4, 5 in Toys) price than in
medium one (e.g., 4, 5, 6, 7 in Cosmetics and 3 in Toys). Instead, in Grocery, they achieve good
performance in medium price (e.g., 3), while perform badly in low (e.g., 1, 2) and high price (e.g.,
4). We speculate that the discrepancy comes from distinct behavior characteristics in different con-
text (datasets). For instance, in Cosmetics, users usually either choose cheap items for daily use or
buy expensive ones for occasional cases. While items with medium price are rarely noticed. As to
Grocery, the quality of cheap food is worrying. Also, it is unnecessary to buy expensive ones in
most cases. Thus, items with medium price are commonly popular. Obviously, considering item
price in e-commerce can enable the business to detect user fine-grained behavior characteristics
and offer satisfactory personalized services accordingly.

6.8 Impact of the Session Length (RQ4)

The session length is a key factor that influences model performance in SBR, since it signifies
how much information the model can rely on to capture user preference. In this part, therefore,
we explore the performance of BiPNet and representative baseline MGS under different session
length in all datasets. Based on average session length of the dataset (as shown in Table 2), we
choose different ranges to display models’ performance patterns in three datasets, i.e., [1, 10] for
Cosmetics and [1, 5] for Grocery/Toys. The BiPNet’s and MGS’s performance curves in terms of
Prec@20 and MRR@20 are presented in Figure 7. Note that, due to significant performance gap
existing onMRR@20 in Cosmetics, we set two unique scales in y-axis to highlight the performance
patterns, i.e., we can refer to the right y-axis to see the performance of length 3–10 for clarity. The
following insights can be concluded from Figure 7:
(1) BiPNet outperforms MGS in all cases, which demonstrates the effectiveness of BiPNet in the

task of SBR. Compared with MGS, the proposed BiPNet not only considers user interest preference
but also emphasizes the significance of user price preference hidden in various item features like
price, categories, and brands. We contend that the consistently strong performance of BiPNet on
various session length comes from its careful consideration for user price preference. (2) Generally
speaking, as the session length increases, the performance of both BiPNet and MGS deteriorates.
That is, models perform unsatisfactorily under long sessions. As suggested in previous works, in
long sessions, there may exist much more noisy clicks [58] and multiple user intents [57]. As a re-
sult, it is challenging for these models to accurately predict user behaviors under such a complex
situation. (3) Overall, compared with long sessions, BiPNet achieves larger improvements over
MGS in short ones. In sessions with a few items (e.g., session length is 1 or 2), there is a little
information available for models to capture user intent. In another word, the models have a seri-
ous problem with data sparsity. Fortunately, the incorporation of item side information in BiPNet
enriches the data, alleviating data sparsity issue to some extent. It also reminds us the rationale of
modeling various user preferences in SBR.

6.9 Hyper-parameter Study (RQ5)

In this part, we investigate the influence of three main hyper-parameters, i.e., the number of price
levels ρ, the repeating number of triple-level convolution r and the number of self-attention heads
h, on our proposed BiPNet.
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Fig. 7. Impact of the session length.

The number of price levels ρ controls the fineness of price levels. The larger the ρ, the finer the
granularity of price discretization, where the price sensitivity of users is assumed higher. As can be
seen from Figure 8(a), if we define ρ too small, i.e., 2, which signifies that an item price is coarsely
viewed as either expensive or cheap, then BiPNet cannot perceive different price preferences, lead-
ing to invalid price modeling and unsatisfactory predictions. In contrast, when the ρ is too large
like 200, the similar price is allocated into different price levels, leading to fragmented price levels.
In such a case, the difference among price levels is not evident, which is also detrimental to model
performance. Moreover, in the view of absolute value, the performance under different ρ is stable.
We believe that the stability comes from the method we developed to form price levels. Equally
partitioning the price probability distribution, our method effectively allocates absolute price into
each level and balances the training data, which helps the model accurately capture various price
preferences. In addition, BiPNet achieves best results under different ρ in different datasets, i.e.,
10 for Cosmetics and 5 for Grocery/Toys. We guess that users present different price sensitivity
under different context (datasets), leading to different optimal values for ρ.
The repeating number of triple-level convolution r determines how much information a node

incorporates from its adjacent nodes. Obviously, every time we conduct the operation of triple-
level convolution, the target node may collect some information from its neighbors. As shown
in Figure 8(b), with r increasing, the BiPNet’s performance improves first because that nodes
can obtain more useful information from others, and then drops due to over-smooth issues. We
choose different r for different datasets, i.e., 3 for Cosmetics/Toys and 2 for Grocery, according
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Fig. 8. BiPNet’s performance under different hyper-parameters

to experimental results. We speculate that there are fewer items in Grocery than Cosmetics and
Toys (as shown in Table 2), which enables the proposed BiPNet to extract semantics of nodes with
fewer triple-level convolution iterations in Grocery.
The number of self-attention heads h determines the granularity of partitioning subspaces when

handling price sequences, where the model attends to information from different aspects. As pre-
sented in Figure 8(c), too little (e.g., 1) or too much (e.g., 32) heads can have a negative impact on
BiPNet’s performance. We argue that few heads are unable to capture complex price preference,
while many heads make the semantics excessively dispersion, both leading to declining perfor-
mance. Moreover, referring to Figure 8(c) and Table 2, we observe that dataset with long sessions
(Cosmetics) benefits from a large h (16) while datasets with short sessions (Grocery and Toys) pre-
fer a small h (8). It is in line with the fact that self-attention with large number of heads is good at
capturing distant dependencies among sequences.

6.10 Complexity Analysis (RQ6)

In this part, we analysis the time complexity of the proposed BiPNet. The most time-consuming
part of BiPNet is the representation learning of triple-level convolution in the proposed
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heterogeneous hypergraph. We can detail its time complexity as O(n × r× (N̄id + N̄p + N̄c + N̄b )
). Specifically, n is the total number of items; r is the iterative number of triple-level convolution;
and N̄id , N̄p , N̄c as well as N̄b are the average number of adjacent nodes with type ID, price,
category, and brand for items. Referring to Table 2, the number of item price, category, and brand
is relatively small, leading to their limited contribution on increasing model complexity. For
example, there are totally 5 price levels in Grocery, i.e., the N̄p is no more than 5. That is, although
we incorporate various kinds of information to depict user behaviors, the model is increased on
a modest scale. Besides, we can also reduce the number of side features, like merging similar
categories or pruning some niche brands, to improve model efficiency. We believe that such
merits of BiPNet contribute to its application in real scenarios.

7 CONCLUSION AND FUTURE WORK

The user purchase behaviors are determined by not only interest preference but also price prefer-
ence in real-world scenario. Unfortunately, the existing methods for session-based recommenda-
tion only focus on user interest preference. Therefore, in this work, we propose a novel approach
BiPNet to capture user interest and price preference simultaneously via exploring various kinds
of information for session-based recommendation. As the pioneer work considering item price in
SBR, BiPNet identifies two challenges that get in the way of utilizing price information: (1) price
preference is hidden behind rich heterogeneous information and (2) price and interest preference
collectively determine user choice. To copywith the first challenge, in BiPNet, we construct a novel
heterogeneous hypergraph that encodes rich information about user price preference including
item ID, item price, item category, and item brand. Based on the heterogeneous hypergraph, a
customized triple-level convolution is innovatively devised to handle heterogeneous information
for interest and price preferences learning. As to the second challenge, we propose a bi-preference
learning schema under the multi-task learning architecture. With exploring the mutual relations
between interest preference and price preference, the bi-preference learning schema is able to
model these two preferences simultaneously and accurately capture user purchase intents. We
conduct extensive experiments on three real-world datasets and the results demonstrate the
superiority of the proposed BiPNet over representative baselines. Further study also supports that
item price is of great significance to determining user behaviors in session-based recommendation.
In the future, first, we plan to introduce more available information like item ratings, item

images, and user reviews to further explore item features and capture user complex preferences.
Second, it is also a promising direction that distinguishing the importance of distinct user
preferences under difference context for further improving prediction accuracy. For instance,
automatically assigning different weights for distinct kinds of losses based on their utility. It can
endow the model with the potential to identify the most influential factors on user behaviors. Last,
the proposed heterogeneous hypergraph with triple-level convolution can be easily extended to
other tasks, where it is necessary to model various kinds of information with complex relations.
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