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ABSTRACT

Current large vision-language models (VLMs) exhibit remarkable
performance in basic video understanding tasks. However, exist-
ing VLMs are still limited to surface-level perception and lack
fine-grained spatio-temporal understanding and combinatorial rea-
soning capabilities. Existing methods typically rely on expensive
human annotations or subtitle extraction, yet they struggle to ef-
fectively model temporal relations between frames. This paper
proposes a structured representation based on temporal triplets to
address two major challenges in traditional approaches: temporal
fragmentation and entity reference ambiguity. By modeling objects,
attributes, and relationships within the video and incorporating
temporal information, we convert semantic content from keyframes
into a sequence of temporal triplets. This structured representa-
tion is then used as input for zero-shot video question answer-
ing (VideoQA). Experiments were conducted on four benchmark
VideoQA datasets: NExT-QA, STAR, MSVD-QA, and MSRVTT-QA,
showing that our method achieves competitive performance with-
out requiring fine-tuning, validating its generality and effectiveness.
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1 INTRODUCTION

Recently, vision-language models (VLMs) have demonstrated re-
markable performance in Visual Question Answering (VQA) tasks
across both image and video domains [6, 10, 14]. Video Question
Answering (VideoQA), as a multimodal reasoning task integrat-
ing visual, textual, and temporal information, is inherently more
challenging than image-based QA [12]. Videos exhibit temporal dy-
namics, with events involving multi-level semantics ranging from
fine-grained object actions (e.g., “waving”) to coarse-grained scene
transitions (e.g., “entering a room”), and complex temporal conti-
nuity and causal relationships among actions [2]. Existing methods
typically enhance video semantics by generating video captions,
frame-level descriptions, or question-answer pairs [3, 13], but they
suffer from two major issues: (1) Temporal fragmentation: Captions
are linear textual representations, and independent frame-level de-
scriptions struggle to explicitly model the temporal span of actions.
(2) Entity reference ambiguity: The lack of object association across
frames leads to inconsistent identification, where the same entity
may be recognized as different objects at different time points.

A visual scene is not only composed of objects, but also en-
riched with diverse attributes and relationships [11]. We believe
that a fine-grained, structured representation of video is essential
for comprehensive video understanding. Therefore, we propose a
structured representation paradigm called Temporal Triplets. As
shown in Figure 1, this approach decomposes the video into a
sequence of temporal triplets, addressing the ambiguity of event
temporal boundaries. In addition, by constructing global object
representations, it enables consistent cross-frame entity alignment.

Specifically, our method consists of the following key steps: First,
we leverage LLM to extract objects and attributes from the video,
thereby constructing global object representations. Based on prede-
fined templates, we leverage LLM to extract objects, attributes, and
their relationships from key frames, generating temporal triplets
that precisely localize key events and align entities across frames.
Finally, the original video content is transformed into a structured
sequence of temporal triplets, which is then converted into textual
form and fed into the LLM to facilitate zero-shot VideoQA and
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Figure 1: Using temporal triplets to represent videos enables
structured modeling of objects, attributes, and relationships
(with the same color indicating semantically consistent enti-
ties), capturing their temporal semantic evolution.
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Figure 2: Our pipeline for Zero-shot VideoQA.

reasoning. In summary, our main contributions are as follows: (1)
We propose a zero-shot VideoQA framework based on temporal
triplets, which organizes visual information with explicit tempo-
ral modeling to enhance reasoning. (2) Experimental results on
four VideoQA benchmark datasets demonstrate that our method
achieves competitive performance without requiring additional
annotations or fine-tuning.

2 METHOD

In this section, we present a model-agnostic, training-free, zero-shot
VideoQA approach based on temporal triplets. As shown in Figure 2.
Given an input video, we first extract global object representations.
Then, we perform uniform sampling to select keyframes and gen-
erate detailed frame-level descriptions. Next, we construct tempo-
ral triplets to abstract the visual content into structured semantic
representations. Finally, the temporal triplets and their attribute
information are used to perform reasoning for VideoQA.

2.1 Video Processing

A video is composed of a series of consecutive frames, but there is
often redundancy in the temporal dimension, as adjacent frames
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tend to share highly similar semantic content. Keyframe sampling is
a common video sampling method, but it can easily miss important
frames that represent scene or event changes. Therefore, we pro-
pose a semantic-aware keyframe clustering strategy that minimizes
redundant features while preserving fine-grained semantics.

We employ a vision-language model (Qwen2.5-VL [1]) to gen-
erate image-text descriptions for each frame and use the BGE-M3
model to compute semantic similarity between adjacent frames. If
two consecutive frames exhibit high similarity, it indicates they
likely represent the same underlying event and can be grouped into
a coherent temporal unit. Specifically, we initialize the keyframe
set V/ with the first frame. For each frame in V, we calculate its
similarity d with the latest frame in the current keyframe set V’.If d
is less than a predefined threshold, it indicates the current frame is
semantically different from the most recent keyframe and is added
to V’; otherwise, the frame is discarded.

2.2 Semantic Modeling

When constructing the temporal triplet representation of a video,
the input consists of three components: the original video, sampled
frames, and textual prompts for generation guidance. During the
question-answering phase, reasoning is performed solely based
on the triplet sequence, without using raw video or frame data.
Therefore, we need to generate high-quality triplets that effectively
capture multi-level and fine-grained spatiotemporal semantics.

For each video, we design prompts to extract triplets from keyframes.

The temporal triplet structure consists of frame-level sets, each
containing subject-predicate-object triplets. To model object inter-
actions, we divide the construction into the following steps:

Object and Attribute Modeling. The generation of triplet encom-

passes objects, their attributes, and the relationships between them.
We aim not only to have a global view of the objects but also to
achieve global semantic modeling of their attributes and interac-
tions. Therefore, we propose a top-down triplet generation strategy,
where we first extract a unified set of object nodes at the video level
as semantic anchors, enabling consistent entity alignment across
frames. Specifically, we extract a unified set of objects at the video
level and generate fine-grained attribute representations for each
object. We require the model to refer to each object using a distinc-
tive and unique attribute, thereby ensuring entity consistency in
subsequent subtitle generation and semantic alignment.

This global object set approach avoids issues such as attribute
drift and resolves the challenge of diverse expressions for the same
entity in question-answering scenarios. For example, questions such
as “What is the man in white doing?” and “What is the man wearing
a hat doing?” may refer to the same person, though described differ-
ently. Traditional frame-level independent object detection methods
struggle to bridge such identity mappings. Our method allows the
use of unified descriptions such as “the man in white” instead of
vague expressions like “a man,” enabling consistent references to
the same entity across different frames.

Relation Modeling and Triplet Extraction. For each pair of

object nodes (o0;, 0 j), we model their interaction by constructing
subject-predicate-object triplets, expressed as a relation edge:
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rij = (0, pi,j, 0)) )
where p; ;j represents the predicate relation between o; and o;.
Concretely, for a uniformly sampled set of T frames { fi, f2, .. ., fT},
we employ the Qwen2.5-VL-7B-Instruct [1] model to generate fine-
grained semantic descriptions d; for each frame, guided by carefully
designed prompts. This process is formalized as:

di = Ip(fi, P), @

where P is an instruction-style prompt guiding the model to

produce detailed natural language descriptions for frame f;. We then

design a structured extractor that uses LLM to extract structured

semantic units in the form of triplets (subject, predicate, object)
from each description d;, denoted as:

i=12,...,n4

®)
where T; is the set of triplets extracted from the i-th frame and
m; is the number of triplets in that frame.
Finally, we represent the original video V as a sequence of struc-
tured frame-level representations:

T; = ExtractTriplets(d;), T; = {(s, pr ok)}lrcnzi1

Tv={T. I2,..., Tu} 4

2.3 Cross-frame Alignment and Temporal
Fusion Modeling

Since we performed redundancy removal on the video frames, when
extracting frame-level structured triples, we need to construct their
temporal spans in the video, i.e., the time range during which each
triple’s semantics are maintained. To this end, we use frame indices
to simulate the temporal intervals of the video. Each structured
triple is assigned a frame interval from the current frame to the
next key frame in chronological order, represented as:

®)

where [t1, tz] indicates the time period during which the action
occurs. We then convert the set of frame indices for each triple
into a continuous time interval representation, thereby obtaining a
structured sequence of temporal triples.

The structured triples generated by LLM may have inconsistent
expressions, and semantic redundancy can introduce noise into rea-
soning. On the other hand, in videos, a behavior may span multiple
time segments and is not always continuously present. For example,
a person may "raise and wave their hand multiple times" through-
out the video. If we model this based on independently extracted
triples from each frame, such behaviors would be fragmented into
multiple segments, making it difficult to capture their complete
semantic scope. Therefore, we further design a fusion mechanism
based on semantic embeddings. Specifically, we use the BGE-M3
model to encode all triples and construct a cosine similarity matrix
to aggregate semantically similar triples. For any two triples, if
their similarity exceeds a threshold, they are considered to form
a semantic group. We then merge the similar triples and combine
their corresponding time intervals to produce a unified temporal
sequence. Through this method, we can both distinguish object
behaviors and capture their temporal characteristics.

mg = (0, p> 0j; [t1, t2])
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2.4 Reasoning Module

We adopt the Qwen2.5 [1] model as the reasoning module in this
work. To enable the model to reason more effectively for video-
based question answering, we input the temporal triplets S in JSON
format, sorted by time. We then combine the global object informa-
tion O, temporal triplets S, prompt P, and question Q as input to
the large model, forming a QA instruction M as follows:

M = Concat(S, 0, P, 0, A) (6)

which guides the model to select the correct answer from the
options. For generative QA, A is empty, and the model is required
to generate the predicted answer based on the input.

3 EXPERIMENTS
3.1 Experimental Setup

Dataset. To test our approach, we conducted experiments on sev-
eral mainstream VideoQA benchmark datasets, including multiple-
choice (NExT-QA [18], STAR [17]) and open-ended question for-
mats (MSVD-QA [19], and MSRVTT-QA [20]). We follow the origi-
nal split settings of the datasets without any modifications.

Baselines. We compare our method with existing baselines,
covering LLM-based methods (e.g., VideoChat [6], Video-LLaVA
[23], Q-ViD [13]) and non-LLM methods (e.g., FrozenBiLM [21],
InternVideo [16]), to comprehensively evaluate the performance of
different modeling paradigms on VideoQA tasks.

Settings. For each video, we perform uniform frame sampling.
We sample T frames from each video. Considering the differences in
scene change rates and durations across videos, we choose different
sampling intervals based on the dataset type: for the NEXT-QA [18]
and STAR [17] datasets, we set T = 20; for the MSVD-QA [19] and
MSRVTT-QA [20] datasets, we set T = 12. This setup effectively
covers the event evolution within the video. In our experiments,
we adopt Qwen2.5-VL-7B-Instruct [1] as our backbone model to
perform object extraction, temporal triplet generation, and video
question answering (VideoQA) reasoning tasks.

3.2 Overall Performance

Evaluation Details. We evaluate our method using the following
benchmarks: (1) We adopt Accuracy as the primary evaluation
metric, defined as the ratio of correctly answered questions to the
total number of questions, to measure the overall correctness of
the model’s answers. (2) For open-ended question answering tasks,
we follow the evaluation protocol of VideoChatGPT [6] and use
GPT-3.5-Turbo as an automatic evaluator, reporting the following
two metrics: Accuracy and average score (where ChatGPT rates
each response on a scale of 0-5, with the mean score calculated).

As shown in Table 1, we evaluated our proposed method on the
MVBench [7] benchmark (excluding the FP sub-task) and compared
it with several existing approaches. Notably, compared to previous
methods, our approach also achieved excellent performance on the
comprehensive evaluation benchmarks.

The results are shown in Table 2 and Table 3. In the table, we
present the performance of our method on four benchmark datasets:
NExT-QA [18], STAR [17], MSVD-QA [19], and MSRVTT-QA [20],
to evaluate the effectiveness of our proposed framework. Our method
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Table 1: Comparison of MVBench benchmark. We bold the best results, and underline the second-best results. Ours shows to be
competitive and even outperform some more complex frameworks for zero-shot video QA.

Model AS AP AA FA UA OE Ol 0S MD AL ST AC MC MA SC CO EN ER Cl  Avg
Video-ChatGPT[10] ~ 23.5 260 620 225 265 540 280 400 230 200 310 305 255 395 485 330 295 260 355 328
Video-LLaMA[23] 275 255 510 290 390 480 405 380 225 225 430 340 225 325 455 400 300 210 370 341
VideoChat[6] 335 265 560 335 405 530 405 300 255 270 485 350 205 425 460 410 235 235 360 359
Video-LLaVA([8] 460 425 565 390 535 530 480 410 290 315 825 450 260 530 415 415 275 385 315 435
ShareGPT4Video[3] ~ 495 395 79.5 400 545 825 545 325 505 415 845 355 625 750 510 465 285 390 515 525
Otter[5] 230 230 275 270 295 530 280 330 245 235 275 260 285 180 385 220 235 190 195 271
Ours 555 495 685 410 585 663 574 360 43.0 370 745 400 580 660 425 69.0 355 325 400 5L1

consistently outperforms existing approaches. Notably, on the STAR
[17] dataset, it achieves a 5.3% improvement over previous methods.
This significant gain may be attributed to the precise modeling of
event temporal dynamics, which enables our framework to effec-
tively capture key events and temporal information in videos.

Table 2: Zero-shot results on multiple-choice VideoQA.

Model NExT-QA STAR
Tem Cau. Des Avg.
InternVideo[16] - - - 49.1 41.6
VideoChat[6] - - - 52.8 45.0
Video-ChatGPT[10] - - - 530 487
SeViLa[22] 61.3 61.5 75.6 63.6 44.6
OneLLM-7b[4] 613 615 756 636 446
Video-LLaVA([8] - - - 57.3 50.6
UI0-2[9] - - - - 522
Q-ViD[13] 61.6 676 722 663 457
Ours 614 688 762 675 575

Table 3: Zero-shot results on open-ended VideoQA.

Model MSVD-QA MSRVTT-QA
Acc. Score  Acc. Score
FrozenBiLM[21] 54.8 - 47.0 -
InternVideo[16] 55.5 - 47.1 -
LLaMA Adapter[24] 54.9 3.1 43.8 2.7
VideoChat[6] 563 2.8 45.0 25
Video-LLaMA[23] 51.6 - 29.6 -
Video-ChatGPT[10]  64.9 33 493 2.8
Emu2-Chat[15] 490 B 314 -
OneLLM-7b[4] 565 - 4338 -
ShareGPT4Video[3] 45.6 - 43.0 -
Otter-7B[5] 55.0 - 47.0 -
Ours 65.0 3.4 51.6 2.8

3.3 Ablation Study

To further analyze the contribution of each component in our
video reasoning framework, we perform ablation studies on the
MSVD [19] dataset, focusing on different visual-semantic inputs: (1)
VideoDesc: A single holistic description for the video, (2) FrameDesc:
Per-frame descriptions with temporal indices, and (3) VideoTriplets:
Directly extract triplets from the video. The experimental results
are shown in table 4. We observe that our method is capable of
extracting more fine-grained information and provides better in-
terpretability. Although FrameDesc yields slightly higher scores, it
relies on verbose frame-level descriptions, whereas our method pro-
vides more structured, compact, and interpretable representations
suitable for generalizable reasoning.
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Table 4: Ablation study of individual components.

Accuracy Score
Ours 65.0 3.32
VideoDesc 62.0 3.36
FrameDesc 65.0 3.48
VideoTriplets 60.7 3.32

In addition, we conducted experiments on key parameters in the
Semantic Modeling stage. We set the similarity threshold to 0.9. As
shown in Figure 3, this strategy successfully removes nearly half of
the frames while maintaining model accuracy, significantly reduces
the number of input frames, merges events across different time
segments, and enhances the interpretability of the model.
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Figure 3: Impact of Frame Description Threshold and Triplet
Merging Threshold Combinations on Accuracy.

4 CONCLUSION

In this work, we propose a zero-shot VideoQA framework based

on temporal triplets, which converts videos into structured, fine-
grained semantic sequences without training. A top-down object

construction approach aligns entities across frames, and carefully

designed prompts extract rich semantics for temporally fused triplets.
Our method achieves strong results across multiple evaluation tasks,

demonstrating broad applicability in video question answering and

reasoning.
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GENAI USAGE DISCLOSURE

This study employs the multimodal large language model Qwen2.5-
VL-7B-Instruct for key tasks such as video scene understanding,
structured semantic representation, and semantic reasoning. Ad-
ditionally, the GPT-3.5-Turbo model was used to evaluate the cor-
rectness of the model’s question-answering results. All task design,
prompt engineering, experimental implementation, and result anal-
ysis were independently conducted by the authors. This paper used
ChatGPT to correct grammar errors and polish it, but no large
chunks of content were generated.
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