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Abstract
Generative retrieval enhances retrieval effectiveness by generat-
ing natural language represented document identifiers. However,
current methods often struggle with two major challenges: limited
identifier quality and insufficient query-document interaction, lead-
ing to limited retrieval performance. To tackle these challenges, we
propose a novel generative retrieval framework integrated with
semantic-aligned multi-layer identifiers and reinforcement learning.
To improve identifier quality, we design a prompt-driven multi-task
learning strategy to generate three types of hierarchical identifiers:
summary, keyword, and pseudo-query, to capture multi-granularity
document semantics. Furthermore, we adopt supervised fine-tuning
to integrate these identifiers. To improve query-document inter-
action, we devise a multi-view ranking fusion mechanism that
combines retrieval results across multi-layer identifiers. We fur-
ther employ a GRPO-based reinforcement learning based on dense
similarity rewards and a difficulty-aware negative sampling strat-
egy to optimize the generated identifiers. Experiments on multiple
benchmark datasets show that our framework significantly outper-
forms existing generative retrieval methods, offering a promising
solution for building more effective and semantically aligned re-
trieval systems. The code for our model is publicly available at
https://github.com/yicentian02/GRAM-RL.
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1 Introduction
Information retrieval plays a vital role in web applications, such as
search ranking [20], question answering [3], and retrieval-augmented
generation [13]. Traditional retrieval paradigms include the sparse
retrieval based on the bag-of-words assumption (e.g., BM25 [23]),
and the dense retrieval leveraging semantic embeddings (e.g., DPR
[9]). However, both paradigms rely on independent stages of repre-
sentation and retrieval, which largely limit retrieval performance.

Recently, generative retrieval (GR) has redefined the retrieval
process as an end-to-end paradigm that directly maps queries to
document identifiers (DocIDs) [6, 27]. The core challenge of this
paradigm lies in the design and optimization of DocIDs [1, 34]. By
eliminating the traditional multi-stage pipeline of indexing and
ranking, GR enables a single-step generation process from a query
to its target documents, significantly improving retrieval perfor-
mance [1, 5, 14, 16, 31]. Recent studies have developed a variety of
DocID representation methods, such as numeric identifiers [27, 34],
textual identifiers [6, 26, 31], and semantic identifiers [14, 27, 29].

Although thesemethods have achieved advanced retrieval perfor-
mance by bypassing explicit query-document matching, generative
retrieval still confronts two major challenges: limited identifier
quality and insufficient query-document interaction.
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For limited identifier quality, existing methods often rely on
single-mode or shallow semantic extraction to generate DocIDs
with limited semantic understanding [1, 27, 34, 35]. This results
in identifiers that do not fully capture the complex semantics and
context of the documents. As a consequence, these low-quality iden-
tifiers may mislead the retrieval process. When users issue queries,
the system may retrieve documents that are only superficially re-
lated to the query, thereby missing most relevant documents. En-
hancing identifier quality is a crucial step for a retrieval system to
understand in-depth document content and match it with queries
for providing the most relevant search results. Although some
recent methods have attempted to enhance identifier quality by in-
corporating titles, term sets, body substrings and urls [1, 14, 31, 34],
the generated identifiers still lack sufficient contextual awareness
to serve as robust semantic representations.

For insufficient query-document interaction, most existing meth-
ods treat query-document interaction as a one-way or weak connec-
tion, neglecting hierarchical and fine-grained interactions between
queries and documents [1, 11, 14, 28, 28, 31]. Since most models
rely on identifier generation probabilities to reflect relevance, they
struggle to capture the combined contribution of multiple semantic
fragments in long documents or ambiguous queries. This under-
scores the need for retrieval strategies that can explicitly model
multi-dimensional query-document interactions beyond the identi-
fier mediation. For instance, the generated identifiers may be too
generic and lack the ability to specifically respond to the query
intent. Even if the system retrieves documents based on the gener-
ated identifiers, it may not be able to accurately prioritize the most
relevant documents. Recent models, such as ROGER [33] and DOGR
[17], have attempted to enhance query-document interaction by
incorporating dense retriever feedback and contrastive ranking loss.
However, these models rely heavily on external retrieval signals,
which results in incomplete alignment between query intent and
document semantics.

To address these two challenges, we propose a novel Generative
Retrieval framework with semantic-Aligned Multi-layer identifiers
via Reinforcement Learning (GRAM-RL). To improve semantic rich-
ness and contextual coverage of DocIDs, GRAM-RL first establishes
three hierarchical identifier layers, namely summary, keyword, and
pseudo-query, to capture query topics, fine-grained semantic details,
and latent user intents, respectively. To jointly generate three-layer
identifiers, GRAM-RL fine-tunes a unified pre-trained language
model via a prompt-driven multi-task learning strategy, enhancing
the semantic and contextual relevance of DocIDs. Furthermore, a
multi-layer fusion mechanism is proposed to combine the isolated
identifiers by constructing separate vector spaces from document
titles, bodies, and generated identifiers. This mechanism then inte-
grates the vector spaces via a multi-view ranking fusion function
based on position decay, view-specific weighting, and paragraph
frequency. Addressing the challenge of limited identifier quality,
GRAM-RL substantially improves the accuracy and robustness of
retrieval in our experiments.

To model fine-grained query-document interactions in DocIDs,
GRAM-RL introduces a Group Relative Policy Optimization (GRPO)-
based reinforcement learning method for generating discriminative
DocIDs. Tailored for retrieval scenarios, the reward function is de-
signed to maximize the average margin between vector similarities

of positive and negative documents relative to the generated iden-
tifiers, thereby guiding the model to produce semantically aligned
DocIDs. Furthermore, a difficulty-aware negative sampling strat-
egy is integrated, which strategically incorporates a balanced mix-
ture of hard, medium, and easy negative examples. This strategy
strengthens contrastive learning by forcing the model to discern
subtle semantic differences, thereby enhancing its ability to capture
fine-grained distinctions and improving the overall discriminative
power of the learned DocIDs.

In summary, our contributions are as follows:

• We propose a novel generative retrieval framework GRAM-
RL via semantic-aligned multi-layer identifiers and reinforce-
ment learning to generate high-quality fine-grained DocIDs
for advanced retrieval performance.

• We design a prompt-driven multi-task fine-tuning for Do-
cID generation, a multi-view ranking fusion for DocID inte-
gration, and a GRPO-based reinforcement optimization for
query-document interaction-aware DocID learning.

• Extensive experiments demonstrate that GRAM-RL outper-
forms state-of-the-art models, and effectively improves the
quality of document identifiers, providing a more efficient
and reliable solution for generative retrieval.

2 The Proposed Framework
2.1 Overview of the GRAM-RL
As illustrated in Figure 1, the proposed GRAM-RL framework con-
sists of two core components: (1) Semantic-aligned multi-layer iden-
tifier learning employs supervised fine-tuning process to generate
hierarchical high-quality document identifiers, capturing query top-
ics, fine-grained semantics, and latent user intents; (2) Multi-view
interaction-aware identifier optimization utilizes GRPO-based re-
inforcement learning to incorporate fine-trained query-document
interactions into identifiers for better relevance matching.

2.2 Semantic-aligned Multi-layer Identifier
Learning

2.2.1 Identifier Creation. To improve the quality of initially gen-
erated identifiers, we propose to extract three-layer identifiers for
each document, namely a summary, a set of keywords, and a set of
pseudo-queries. These identifiers capture the document semantics
at multiple granularities for document representation and retrieval.

Top-layer Summary Identifier. This type of DocIDs consists of a
concise document summary 𝑠 with no more than ten words, which
serves as a high-level representation that captures the core theme of
the document, acting as the top-layer identifier in our framework.

Middle-layer Keyword Identifier. This type of DocIDs involves a
set of more representative and discriminative keywords extracted
from the summary and expanded using LLMs, enabling effective
paragraph-level semantic matching.

Bottom-layer Pseudo-query Identifier. This type of DocIDs in-
volves a set of query-like questions generated by recombining
keywords and prompting with an LLM, serving as potential user
queries. Pseudo-queries project document semantics into the query
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Figure 1: Architecture of the GRAM-RL framework with two core components. Semantic-aligned multi-layer identifier learning
generates hierarchical document identifiers via supervised fine-tuning to capture query topics, fine-grained semantics, and
latent user intents. Multi-view interaction-aware identifier optimization employs GRPO-based reinforcement learning to
integrate fine-grained query-document interactions into identifiers, optimizing their relevance for retrieval.

space, simulating realistic information needs and enhancing re-
trieval diversity. To illustrate the three-layer identifiers, we provide
an example in Table 1. By extracting these identifiers, document
semantics are better aligned for relevance ranking.

2.2.2 Identifier Learning via Supervised Fine-tuning. To accurately
fit DocIDs with semantic information, we fine-tuned a pre-trained
auto-regressive language model to generate each type of identi-
fiers based on a given query 𝑞. We crafted task-specific prompts
for generating the gold-standard summary, keyword, and pseudo-
query with respect to each document. Specifically, given a train-
ing sample (𝑞, 𝑠∗, 𝑘∗, 𝑧∗), where 𝑞 is the input query, and 𝑠∗, 𝑘∗,
and 𝑧∗ are the corresponding high-quality generated summary,
keywords, and pseudo-queries extracted from highly relevant doc-
uments, we construct three input-output training pairs: (𝑥𝑠 , 𝑦𝑠 ),
(𝑥𝑘 , 𝑦𝑘 ), and (𝑥𝑧 , 𝑦𝑧), where 𝑥∗ is the constructed prompt and 𝑦∗
is the expected output. We train the generation model 𝑓 (·) using
the auto-regressive cross-entropy loss[6]. For each target sequence
𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑇 ) and its corresponding input 𝑥 , the loss is com-
puted as:

LCE (𝑓 (𝑥), 𝑦) = −
𝑇∑︁
𝑡=1

log 𝑃 (𝑦𝑡 | 𝑦<𝑡 , 𝑥 ;𝜃 ), (1)

where 𝑃 (𝑦𝑡 | 𝑦<𝑡 , 𝑥 ;𝜃 ) is the probability assigned by the model 𝑓
with parameters 𝜃 to the token 𝑦𝑡 given the previous tokens 𝑦<𝑡
and the input 𝑥 . This encourages the model to generate summaries,
keywords, and pseudo-queries that are close to the gold-standard
references under a unified auto-regressive learning framework.

2.3 Multi-view Interaction-aware Identifier
Optimization

2.3.1 Multi-view Retrieval. To enhance relevance recall and re-
trieval robustness, we propose a Hierarchical Ranking Fusion (HRF)
mechanism that leverages the complementary semantic coverage
of multiple identifiers. This mechanism retrieves documents from
multiple indexes, and fuses mlutiple ranking results into a unified
ranking.

Identifier-Guided Query Expansion. For a given query 𝑞, we con-
catenate it with each type of identifiers (summary 𝑠 , keywords 𝑘
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Table 1: An example on three-layer document identifiers.

Query: Who was the British Prime Minister in 1953?

Document (https://en.wikipedia.org/wiki/Winston_Churchill)
title: Winston Churchill
text: Winston Churchill Sir Winston Leonard Spencer-Churchill (30
November 187424 January 1965) was a British politician, statesman,
army officer, and writer, who was PrimeMinister of the United Kingdom
from 1940 to 1945 and again from 1951 to 1955. As Prime Minister,
Churchill led Britain...

Multi-layer Identifiers
Summary:Winston Churchill: WWII British PrimeMinister andwriter.
keywords:Winston Churchill, British Prime Minister, WWII, writer,
Conservative Party, Member of Parliament, statesman, army officer,
economic liberal, British imperialist
Pseudo-queries:
- Who was Winston Churchill?
- Winston Churchill writings?
- What was Winston Churchill’s role during World War II?
- Which political parties did Winston Churchill belong to?
- When did Winston Churchill serve as Prime Minister of the UK?

and pseudo-queries 𝑧), to construct three expanded queries:

𝑞𝑠 = [𝑞; 𝑠] (2)
𝑞𝑘 = [𝑞;𝑘] (3)
𝑞𝑧 = [𝑞; 𝑧] (4)

These three forms of expanded queries are used independently to
retrieve documents from three-view vector indexes.

Multi-View Index Construction. To match the semantic character-
istics of each identifier type, we construct three dense retrieval vec-
tor indexes with tailored document encodings: (1) Summary-view
index, where documents are encoded as [Title; Text; Summary]; (2)
Keyword-view index, where documents are encoded as [Title; Text;
Keywords]; (3) Pseudo-query-view index, where documents are
encoded as [Title; Text; Pseudo-queries]. Each index is built using
a pre-trained embedding model, ensuring compatibility between
identifier queries and document vectors.

Hierarchical Ranking Fusion. Once retrieval is performed on all
three-view indexes, we obtain three ranked lists: 𝑅𝑠 (𝑞), 𝑅𝑘 (𝑞), and
𝑅𝑧 (𝑞), corresponding to 𝑞𝑠 , 𝑞𝑘 , and 𝑞𝑧 respectively. These lists are
merged using a frequency-aware weighted reciprocal rank fusion
function for each document 𝑑 , computed as follows.

𝑆 (𝑞, 𝑑) =
∑︁

𝑡 ∈{𝑠,𝑘,𝑧}
𝑤𝑡 ·

I[𝑟𝑡 (𝑞, 𝑑) exists]
log2 (1 + 𝑟𝑡 (𝑞, 𝑑))

· 𝑓𝑞,𝑑 (5)

where 𝑟𝑡 (𝑞, 𝑑) is the rank position of 𝑑 under view 𝑡 , if it appears
(1-based indexing).𝑤𝑡 is the learned or heuristic weight for view 𝑡 .
I[·] is the indicator function, ensuring documents not retrieved in
view 𝑡 do not contribute. 𝑓𝑞,𝑑 =

∑
𝑡 I[𝑟𝑡 (𝑞, 𝑑) exists] is the appear-

ance frequency of document 𝑑 across views. This scoring function
ensures higher-ranked documents contribute more due to recipro-
cal log decay, and view weights𝑤𝑡 enable prioritizing more reliable
identifier types. This fusion-based framework unifies multiple se-
mantic perspectives of the query, allowing the system to recall

documents that may match one or more facets of the intended
meaning. It is particularly effective for complex or under-specified
queries, where a single identifier may be insufficient.

2.3.2 Query-document Interaction-aware Reinforcement Learning.
Relying solely on supervised signals to generate positive identifiers
is often insufficient for training a model with strong recall capa-
bilities. In particular, under weakly supervised settings, unstable
identifier quality may frequently lead to the retrieval of irrelevant
documents.Therefore, to further capture the query-document in-
teractions, we introduce the Group Relative Policy Optimization
(GRPO)-based reinforcement learning [24] to encode interaction-
aware information into the generated DocIDs, thereby enhancing
the model’s practical utility in retrieval tasks.

Specifically, for each query 𝑞𝑖 in the training set, we use the
current generation model 𝜋𝜃 to generate one candidate identifier
𝑧𝑖 , and employ the learned retrieval model to retrieve a ranked
list of documents 𝑃𝑖 = {𝑝1

𝑖
, 𝑝2

𝑖
, . . . , 𝑝3

𝑖
}. Each 𝑃𝑖 includes both rel-

evant (positive) documents closely related to the query, as well
as irrelevant or incorrectly retrieved (negative) documents. Our
learning aims to encourage the model to generate identifiers that
prioritize retrieving positive documents. To this end, we define a
reward function based on vector similarity to measure the retrieval
quality of each generated identifier:

𝑟𝑖 = 𝜆 ·
(
Simpos (𝑧𝑖 ) − Simneg (𝑧𝑖 )

)
, (6)

Simpos (𝑧𝑖 ) =
1

|𝑃+
𝑖
|
∑︁
𝑝∈𝑃+

𝑖

Sim(𝑧𝑖 , 𝑝), (7)

Simneg (𝑧𝑖 ) =
1

|𝑃−
𝑖
|
∑︁
𝑝∈𝑃−

𝑖

Sim(𝑧𝑖 , 𝑝) (8)

where Sim(𝑧, 𝑝) denotes the cosine similarity computed using the
BGE-v1.5[30] embedding model. 𝑃+

𝑖
and 𝑃−

𝑖
represent the sets of

positive and negative documents in the retrieved list, respectively.
𝜆 is a reward scaling factor, typically set to 100.0.

Stratified Construction of Positive and Negative Samples. To en-
sure the reward signal is stable and discriminative, we use stratified
sampling to form positive (𝑃+

𝑖
) and negative (𝑃−

𝑖
) sets. For 𝑃+

𝑖
, we

select top-ranked retrieved documents that are either relevant or
contain answers, ensuring semantic alignment with the query. For
𝑃−
𝑖
, we craft a multi-level negative set: hard negatives with high

similarity but irrelevance, medium negatives related to the topic but
lacking answers, and easy negatives fully unrelated to the query.
Sampling from each negative category by predefined ratios, such as
30% hard, 40% medium, and 30% easy, enhances the model’s capa-
bility to handle difficult cases and avoid semantic confusion, with
the ratio determined empirically through grid search experiments.

Advantage Estimation and Policy Update. To reduce variance dur-
ing training, we adopt intra-group normalized relative advantage
estimation in GRPO. For a group of generated identifiers, denoted
as 𝐺 , we normalize each reward 𝑟𝑖 using:
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Table 2: Performance comparisons on NQ and TrivaQA. All results are from our own implementation.

Category Method NQ TrivaQA

R@1 R@5 R@10 MRR@10 R@1 R@5 R@10 MRR@10

Sparse BM25 0.266 0.511 0.602 0.371 0.466 0.647 0.703 0.543
DocT5Query 0.383 0.619 0.693 0.484 0.493 0.708 0.766 0.586

Dense

DPR 0.449 0.631 0.683 0.528 0.437 0.612 0.679 0.512
Sentence-T5 0.364 0.588 0.655 0.457 0.442 0.659 0.721 0.534
GTR-base 0.419 0.636 0.694 0.510 0.510 0.705 0.764 0.595
BGE 0.452 0.659 0.720 0.541 0.504 0.701 0.754 0.587

Generative

SEAL 0.246 0.476 0.562 0.343 0.250 0.437 0.525 0.329
MINDER 0.352 0.536 0.613 0.499 0.377 0.570 0.642 0.459
DGR 0.423 0.597 0.656 0.499 0.460 0.646 0.703 0.539
LTRGR 0.431 0.616 0.670 0.509 0.460 0.658 0.715 0.543

Ours GRAM-RL 0.495 0.687 0.736 0.576 0.600 0.752 0.792 0.665

𝑟𝑖 =
𝑟𝑖 − 𝜇𝑟

𝜎𝑟
, where 𝜇𝑟 =

1
𝐺

𝐺∑︁
𝑗=1

𝑟 𝑗 , 𝜎𝑟 =

√√√√
1
𝐺

𝐺∑︁
𝑗=1

(𝑟 𝑗 − 𝜇𝑟 )2 .

(9)
We treat the normalized reward 𝑟𝑖 as a shared advantage value

𝐴𝑖,𝑡 = 𝑟𝑖 for all tokens in the generated sequence 𝑧𝑖 , and construct
the GRPO loss as:

LGRPO = E(𝑞,𝑧𝑖 )
[
min (𝜌𝑖 · 𝑟𝑖 , clip(𝜌𝑖 , 1 − 𝜖, 1 + 𝜖) · 𝑟𝑖 )

− 𝛽 · KL(𝜋𝜃 ∥𝜋ref)
]

(10)

where 𝜌𝑖 =
𝜋𝜃 (𝑧𝑖 |𝑞)
𝜋𝜃old (𝑧𝑖 |𝑞)

is the policy ratio, 𝜖 is a clipping threshold,
and 𝜋ref is a frozen reference model after SFT. Using this GRPO-
based reinforcement learning, fine-grained query-document inter-
actions are encoded into DocIDs, enriching the identifiers with
stronger contextual semantics for more effective retrieval.

3 Experiment
3.1 Research Questions
To evaluate the performance of our GRAM-RL framework, we focus
on answering the following research questions:

• RQ1: How does our GRAM-RL perform compared with ex-
isting state-of-the-art methods?

• RQ2: What is the effect of each designed component in han-
dling the task?

• RQ3: How do negative sample selection strategies affect
retrieval performance?

• RQ4: Why is the hierarchical ranking fusion important for
improving retrieval performance?

• RQ5: How well does the proposed framework work in real-
world instances?

3.2 Datasets and Preprocessing
We evaluate our model on three widely used benchmarks: Natural
Questions (NQ) [10], TriviaQA [8], and BEIR NFCorpus [2]. NQ
contains 140k documents and 30k queries from real Google search
logs, while TriviaQA includes 220k documents and 35k queries
from Wikipedia. NFCorpus is a biomedical dataset with 11,823 doc-
uments and 2,591 queries. For evaluation, we mix relevant and
irrelevant documents (top-10 BM25 candidates) to create a chal-
lenging setup. Additionally, we use DeepSeek-v3 [7] to generate
<= 10-word summaries for each document, from which we extract
up to 10 keywords and construct five pseudo-queries to capture
user intent.We choose DeepSeek-v3 for its strong summarization
and keyword generation capability.

3.3 Baselines and Metrics
We compare our approach against a range of generative retrieval
methods, including SEAL [1], MINDER [14], LTRGR [15], DGR
[16], GENRE [6], and GLEN [11]. In addition, we include traditional
sparse retrieval baselines such as BM25 [23] and DocT5Query [21],
as well as dense retrieval methods including DPR [9], SentenceT5
[18], and GTR-base [19]. Most baseline results are reproduced us-
ing publicly available implementations, while others are reported
directly from their respective papers when models are not released.

Following previous works, we adopt widely used retrieval met-
rics, including Recall@1, Recall@5, Recall@10, and MRR@10 for
NQ and TriviaQA, and NDCG@10, Recall@5, Recall@20, and Re-
call@100 for NFCorpus, with cutoff values chosen based on dataset
size and query characteristics to balance top-ranked precision and
overall recall.

3.4 Implementation Details
All experiments are conducted on a single NVIDIA A800 GPU
(80GB). For model configuration, we use Qwen2.5-7B-Instruct [22]
as our main model, which uses the Transformers framework. It has
a learning rate of 5 × 10−5 and uses the Adam optimizer with a
weight decay of 0.01. The batch size is set at 64. Its LoRA rank/Alpha
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Table 3: Performance comparisons on NFCorpus. The meth-
ods marked with † are from their official implementation;
others are from our implementation. Results not available
are denoted as ’–’.

Method NDCG@10 R@5 R@20 R@100

BM25 0.311 0.100 0.164 0.204
DocT5Query 0.305 0.103 0.149 0.198
Sentence-T5 0.295 0.119 0.167 0.209
GTR-base 0.315 0.118 0.171 0.211
BGE 0.366 0.137 0.199 0.256
SEAL 0.239 0.065 0.145 0.194
MINDER 0.280 0.064 0.151 0.207
GENRE† 0.200 – – –
GLEN† 0.159 – – –
GRAM-RL (Ours) 0.373 0.144 0.220 0.270

values are 64/16. For fair comparison, we additionally train a BART-
large [12] model that generates only hierarchical identifiers, which
utilizes the Fairseq framework. The learning rate is set at 3 × 10−5,
and the optimizer employed is Adam with a weight decay of 0.01.
The maximum number of tokens is specified as 4192. For BART
large inference, the beam size is set to 5,15,15 for NFCorpus, NQ,
TrivaQA, respectively. For GRPO-based reinforcement learning,
We apply GRPO with up to 10 top-ranked positives per query. For
negative sampling, we adopt a 3-level difficulty strategy, selecting
3 hard, 4 medium, and 3 easy negatives per query. GRPO is trained
with a learning rate of 1×10−5, batch size 256, LoRA rank 64, 𝛼 = 16,
and weight decay 0.01.

4 Results and Analysis
4.1 Overall Performance (RQ1)
We summarize our main experimental results on NQ, TriviaQA in
Table 2, and NF-Corpus in Table 3, where bolded numbers are the
best performance of each column and the second best method is
underlined. The following findings highlight the effectiveness of
our proposed generative retrieval framework.

Our method significantly outperforms existing generative re-
trieval models across all datasets. On NQ and TriviaQA, GRAM-
RL improves MRR@10 by +6.7% and +12.2% over LTRGR, and on
NFCorpus, it surpasses MINDER by +9.3% in NDCG@10. While
prior models use shallow document representations, our framework
generates structured identifiers that encode high-level semantic
information, aligning better with diverse query intents. GRAM-
RL’s superior performance across benchmarks demonstrates the
benefits of structured identifier generation. LTRGR uses static rel-
evance labels and DGR distills preferences from teacher models,
lacking dynamic feedback. In contrast, GRPO provides fine-grained
rewards based on relative similarity differences, bridging identifier
generation and ranking effectiveness.

Traditional GR models face limitations with constrained auto-
regressive decoding and beam search, which can hinder recall per-
formance. Our method employs vector-based similarity for flexible,
non-autoregressive generation, enhancing recall and robustness to
distributional variance. GRAM-RL consistently outperforms sparse

Table 4: Ablation studies on NFCorpus.

ndcg@10 R@5 R@20 R@100

GRAM-RL 0.373 0.144 0.220 0.270
w/o GRPO 0.335 0.135 0.204 0.259
w/o LLM+GRPO 0.312 0.125 0.199 0.259
w/o keyword+GRPO 0.295 0.119 0.188 0.254
w/o query+GRPO 0.305 0.130 0.196 0.258
w/o summary+GRPO 0.312 0.121 0.197 0.258

Table 5: Ablation studies on NQ.

R@1 R@5 R@10 MRR@10

GRAM-RL 0.495 0.687 0.736 0.576
w/o GRPO 0.486 0.683 0.735 0.571
w/o LLM+GRPO 0.462 0.667 0.726 0.548
w/o query+GRPO 0.465 0.683 0.731 0.559
w/o keyword+GRPO 0.464 0.681 0.733 0.553
w/o summary+GRPO 0.456 0.671 0.724 0.548

Table 6: Ablation studies on TivaQA.

R@1 R@5 R@10 MRR@10

GRAM-RL 0.600 0.752 0.792 0.665
w/o GRPO 0.572 0.748 0.792 0.647
w/o LLM+GRPO 0.535 0.718 0.769 0.613
w/o query+GRPO 0.560 0.745 0.789 0.640
w/o keyword+GRPO 0.543 0.748 0.788 0.632
w/o summary+GRPO 0.556 0.740 0.785 0.635

and dense baselines. On NQ, it improves MRR@10 over GTR-base
by +6.6%, and on TriviaQA, achieves +9.0% gain in Recall@1. On
NFCorpus, it surpasses BGE in NDCG@10 by +0.7% and Recall@100
by +1.4%, demonstrating strong generalization and promises for
end-to-end Retrieval-Augmented Generation (RAG) applications.

4.2 The Effect of Component Design (RQ2)
We conduct detailed ablation studies to investigate the impact of
different components during the training and inference stages. The
ablation is performed on the training phase using our framework,
with or without GRPO and with different backbone models. Specif-
ically, we explore the following variants: (1) w/o keyword+GRPO:
The keyword generation module is removed during the identi-
fier generation stage and the GRPO module is removed. (2) w/o
query+GRPO: The pseudo-query generation module is removed
and the GRPO module is ommited. (3) w/o summary+GRPO: The
summary generation module is removed and the GRPO module is
dropped. (4) w/o GRPO: The reinforcement learning module (GRPO)
is removed. (5) w/o LLM+GRPO: The model backbone is replaced
with BART-large instead of a LLM, and the GRPO training stage is
omitted. The results are shown in Table 4, Table 5 and Table 6.

Removing any single identifier view consistently degrades per-
formance. On NQ, excluding summary, keyword, and pseudo-query
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causes Recall@1 to drop by 3.0%, 2.2%, and 2.1%, respectively. NF-
Corpus shows NDCG@10 decreases of 2.3%, 4.0%, and 3.0%, and
TriviaQA exhibits 1.6%, 2.9%, and 1.2% drops in Recall@1. Each
view contributes unique information: summary captures document
semantics, keywords highlight core concepts, and pseudo-queries
simulate user queries. Combining all three provides richer, more
diverse information than any two, validating the necessity of multi-
view identifiers in generative retrieval.

Dataset sensitivity varies by identifier view. On QA-oriented NQ,
summary contributes most by condensing answer-focused content.
NF-Corpus benefits more from pseudo-queries, likely due to captur-
ing diverse matching paths. On TriviaQA, keyword removal leads
to the largest Recall@1 drop, reflecting the effectiveness of concise
keyword representations for factoid questions. These patterns un-
derline the importance of tailoring identifier strategies to dataset
characteristics.

Reinforcement learning also proves effective. Removing GRPO
drops Recall@1 by 0.9% andMRR@10 by 0.5% onNQ, andNDCG@10
by 3.8% on NF-Corpus. On TriviaQA, it reduces Recall@1 by 2.8%
and MRR@10 by 1.8%, demonstrating GRPO’s utility in enhancing
semantic relevance. Backbone choice significantly impacts perfor-
mance. Replacing the LLM with BART-large and removing GRPO
("w/o LLM+GRPO") yields the largest degradation: Recall@1 drops
by 6.5% on TriviaQA, 3.3% on NQ, and NDCG@10 by 6.1% on NF-
Corpus. Both a strong backbone and GRPO are critical for effective
identifier generation and retrieval, especially in complex QA tasks.

4.3 The Effect of Negative Sample Selection
Strategy (RQ3)

We conduct studies on negative sample selection strategies in the
GRPO reinforcement learning phase. Specifically, we select the top-
𝑀 positive samples and𝑀 negative samples from Top-𝑘 candidates
for training. We evaluate the following strategies for selecting neg-
ative samples: (1) Easy: Selecting the top 10 negative samples (i.e.,
those ranked higher) from the Top-𝑘 candidates. (2) Mixed: Dividing
the negative samples into three difficulty levels:hard, medium, and
easy, selecting 3, 4, and 3 samples respectively from each level. (3)
Hard: Selecting the bottom 10 negative samples (i.e., those ranked
lower) from the Top-𝑘 candidates.

The results are summarized in Table 7, Table 8, and Table 9. As
shown, For NFCorpus, the Mixed strategy achieves the best per-
formance across all metrics, particularly in terms of NDCG@10.
Specifically, the Mixed strategy outperforms both the Hard and
Easy strategies by +3.5% and +2.8% respectively in NDCG@10. This
suggests that balancing the difficulty levels of negative samples
contributes to better ranking performance. The Mixed negative
sampling strategy consistently yields higher Recall@1 scores on
both the NQ and TriviaQA datasets, surpassing the Hard and Easy
strategies by +0.6% and +1.0% on NQ, and by +0.6% and +1.4% on
TriviaQA, respectively. Overall, theMixed strategy consistently out-
performs the Hard and Easy strategies across different datasets (NF-
Corpus, TrivaQA, and NQ) and evaluation metrics, demonstrating
its robustness and effectiveness in improving retrieval performance
by balancing the difficulty levels of negative samples. Further anal-
ysis indicates that the Mixed strategy effectively captures a diverse
range of negative samples, which helps the model learn more robust

Table 7: Performance Comparison of Negative Sample Selec-
tion Strategies in NFCorpus.

Strategy NDCG@10 R@5 R@20 R@100
Mixed 0.373 0.144 0.220 0.270
Hard 0.338 0.140 0.212 0.265
Easy 0.345 0.131 0.201 0.264

Table 8: Performance Comparison of Negative Sample Selec-
tion Strategies in TrivaQA.

Strategy R@1 R@5 R@10 MRR@10
Mixed 0.600 0.752 0.792 0.665
Hard 0.594 0.750 0.791 0.662
Easy 0.586 0.746 0.788 0.655

Table 9: Performance Comparison of Negative Sample Selec-
tion Strategies in NQ.

Strategy R@1 R@5 R@10 MRR@10
Mixed 0.495 0.687 0.736 0.576
Hard 0.489 0.686 0.733 0.571
Easy 0.485 0.683 0.736 0.569

representations. In contrast, the Hard strategy may focus too much
on difficult cases, leading to suboptimal generalization, while the
Easy strategy may not provide sufficient challenge for the model to
improve its ranking capabilities.

4.4 The Effect of Hierarchical Ranking Fusion
(RQ4)

We perform a grid search over the weights used in the hierarchical
list result merging strategy (as described in Section 2.3.1), ranging
from 0.1 to 1.0 with an interval of 0.1. Each configuration is eval-
uated on the validation set, and the final weight is chosen based
on the setting that achieves the highest average score across all
evaluation metrics. We analyze the performance of the proposed Hi-
erarchical Ranking Fusion (HRF) framework across three datasets:
NQ, TriviaQA, and NFCorpus. As shown in Figure 2, on NQ, HRF
achieves Recall@1 0.495 and MRR@10 0.576, improving by up to
1.0% and 0.7% over the rank method. On TriviaQA, it reaches Re-
call@1 0.600 and MRR@10 0.665, again outperforming others. The
improvements are especially notable at Recall@1, showing HRF’s
strength in ranking the most relevant document first. On NFCor-
pus, HRF obtains NDCG@10 0.373 and Recall@5 0.144, outperform-
ing frequency (0.352/0.141) and rank-based (0.322/0.138) baselines.
These results demonstrate that the hierarchical merging strategy
effectively integrates frequency and rank cues, leading to more
accurate and generalizable retrieval.

4.5 Case Study (RQ5)
Query Group Retrieval Analysis. To demonstrate the semantic

consistency of our retrieval algorithm, we analyze retrieval results
for queries in groups A and B,see Figure 3 and Figure 4. The x-
axis represents document IDs and the y-axis shows their scores.
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Figure 2: Performance Comparison of HRF, frequency and
Rank.
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A-1:Who was the British Prime Minister in 1953?
A-2:Who was the British Prime Minister?

Figure 3: Scores of retrieved documents for Query Group A.

Similar queries retrieve closely distributed and partially overlapping
documents, while dissimilar queries from different groups yield
distinct, non-overlapping sets. For example, group A often retrieves
documents 71185, 568957, and 71059, while group B retrieves 42305,
129601, and 581476. To further illustrate this, we visualize BGE-
based document embeddings using t-SNE in Figure 5, where each
color denotes documents linked to a specific query. The formation
of two clear clusters confirms that our method effectively captures
group-level semantics and improves retrieval accuracy.

Qualitative Analysis of GRPO Effectiveness. To illustrate the effect
of GRPO, Table 10 compares retrieval results before and after train-
ing. Retrieval is performed using the query concatenated with gen-
erated identifiers (summary, keyword, pseudo-query). Before GRPO,
identifiers only partially capture the query intent: the pseudo-query
mentions Darwin but omitsWallace, and the keyword “evolution” is
overly generic, leading to a result focused mainly on Darwin. After
GRPO, the identifiers become more precise: the keyword explicitly
includes “Darwin,” the summary states his role in evolution, and
the pseudo-query is broadened to “Who first published evolution
theory?”, covering both Darwin and Wallace. This yields a top-1
document that highlights their joint contributions. Overall, GRPO
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B-1:Who was Britain's last reigning Tudor Monarch?
B-2:Who was the last Tudor ruler of England?

Figure 4: Scores of retrieved documents for Query Group B.
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Figure 5: t-SNE visualization of BGE document embeddings.

enhances the informativeness and semantic alignment of identifiers,
resulting in more accurate and complete retrieval.

5 Related Work
5.1 Document Retrieval
Document retrieval aims to find relevant documents from a large
corpus given a user query. Traditional methods use a multi-stage
pipeline of indexing and ranking, and are mainly divided into sparse
and dense retrieval. Sparse retrieval, such as BM25 [23], relies on
inverted indexes and exact term matching. BM25 is efficient but
depends on lexical overlap, making it insensitive to semantic re-
lationships and unable to model contextual information. Dense
retrieval models, like DPR [9], represent queries and documents as
dense vectors and use approximate nearest neighbor search. Thanks
to pre-trained language models, dense retrieval achieves better
performance, but still faces challenges such as limited end-to-end
optimization, embedding bottlenecks, and insufficient fine-grained
query-document interactions.

5.2 Generative Retrieval
Unlike traditional retrieval models, generative retrieval models di-
rectly utilize language models to generate identifiers for relevant
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Table 10: Comparison of generated identifiers and top-ranked document identifiers before and after GRPO.

Query: who proposed evolution in 1859 as the basis of biological development?
Answer: Charles Darwin, Alfred Russel Wallace
Generated Identifiers before GRPO Generated Identifiers after GRPO
Keyword: evolution
Summary: Darwin’s ’On the Origin of Species’ introduced evolu-
tion.
Pseudo-Query:What did Charles Darwin propose in On the Origin
of Species?

Keyword: Darwin
Summary:Darwin proposed evolution in ’On the Origin of Species’.
Pseudo-Query: Who first published evolution theory?

Top 1 document’s identifiers (Before GRPO) Top 1 document’s identifiers (After GRPO)
Keyword: Darwinism, biological evolution, natural selection,
Charles Darwin, species
Summary: Darwinism explains species evolution via natural selec-
tion.
Pseudo-Query:
– What is Darwinism and how does it explain evolution?
– How does natural selection contribute to biological evolution?
– Who was Charles Darwin and what did he discover?

Keyword: biological organization, evolution, natural selection,
Charles Darwin, Alfred Russel Wallace
Summary: Evolution by natural selection explained by Darwin and
Wallace.
Pseudo-Query:
– What is evolution by natural selection?
– How did Darwin and Wallace contribute to evolutionary theory?
– What is Darwin’s Origin of Species about?

documents based solely on the input query. GENRE [6] is one of
the early representatives in this field, employing an auto-regressive
language model with prefix-constrained beam search to generate
target entity titles from a candidate set. Recent research has primar-
ily focused on improving document representation and training
objectives. Based on their representational forms, document identi-
fiers can be broadly categorized into numerical and lexical types.
Numerical identifiers model document similarity through clustering
methods [4, 27, 28] or product quantization [34], offering compact
semantic encodings. However, due to the semantic gap between
numerical representations and natural language, they struggle to
fully leverage the capabilities of pre-trained language models. In
contrast, lexical identifiers—being natural language sequences—are
easier to generate and interpret, thus receiving increasing attention.
For instance, Ultron [34] uses document URLs and titles, SEAL [1]
selects n-grams as identifier candidates, MINDER [14] introduces
multi-view combinations, and TSGen [31] constructs representa-
tions based on sets of salient terms.

On the training side, researchers have incorporated ranking
supervision to improve generation quality. LTRGR [15] utilizes a
marginal ranking loss based on generation probabilities to enhance
document-level ranking performance. GLEN [11] models query-
document relevance via a two-stage indexing process, while DGR
[16] introduces teacher model-based ranking information through
knowledge distillation. D2Gen [5] and DOGR [17] adopt contrastive
learning strategies to enhance the semantic distinctiveness of doc-
ument identifiers. GenRRL [32] and Re3val [25] apply reinforce-
ment learning to generative retrieval, using KL-regularized rewards
with contextual re-ranking to improve identifier generation and
retrieval performance. However, most of these approaches rely on
static supervision signals, limiting their ability to directly optimize
retrieval performance. Despite notable progress in identifier design
and training objectives, the mismatch between generation objec-
tives and downstream retrieval performance is still remained due to
insufficient semantic expressiveness of identifiers. To address these
limitations, we propose a reinforcement learning-driven generative

retrieval framework that incorporates semantic-aligned multi-layer
identifiers to comprehensively capture document semantics. By
using the similarity margin between the generated identifier and
positive/negative documents as rewards, our framework generate
more discriminative DocIDs for advanced retrieval performance.

6 Conclusions
This paper proposes GRAM-RL, a generative retrieval framework
based on multi-layer identifiers and reinforcement learning, de-
signed to address limited identifier quality and insufficient query-
document interaction in generative retrieval. GRAM-RL generates
three types of document identifiers: summaries, keywords, and
pseudo-queries to capture document semantics at different lev-
els of granularity. A prompt-driven multi-task training strategy
enables joint optimization of identifier generation. Furthermore,
the framework introduces a multi-view vector fusion mechanism
and a GRPO-based reinforcement learning module, which together
enhance retrieval performance. Experimental results demonstrate
that GRAM-RL significantly outperforms existing generative re-
trieval approaches across multiple benchmark datasets, particularly
in terms of recall and ranking quality. In future work, we plan
to explore dynamically adapting identifier granularity based on
query characteristics to further improve semantic alignment. In-
tegrating real-time user feedback into the reinforcement learning
loop for online optimization of retrieval strategies is another direc-
tion. Additionally, extending GRAM-RL to multi-modal retrieval
scenarios and optimizing its efficiency for large-scale corpus will
be key research focuses to enhance its practical applicability and
scalability.
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