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ABSTRACT
Learning to rank utilizes machine learning methods to solve rank-
ing problems by constructing ranking models in a supervised way,
which needs fixed-length feature vectors of documents as inputs,
and outputs the ranking models learned by iteratively reducing
the pre-defined ranking loss. The document features are always ex-
tracted based on classic textual statistics, and different features con-
tribute differently to ranking performance. Given that well-defined
features would contribute more to the retrieval performance, we
investigate the usage of autoencoders to enrich the feature repre-
sentations of documents. Autoencoders, as basic building blocks of
deep neural networks, have been successfully used in many text
mining tasks for generating effective features. To enrich the feature
space for learning to rank, we introduce supervision into the loss
functions of autoencoders. Specifically, we first train a linear rank-
ing model on the training data, and then incorporate the learned
weights into the reconstruction costs of an autoencoder. Meanwhile,
we accumulate the costs of documents for a given query with query-
level constraints for producing more useful features. We evaluate
the effectiveness of our model on three LETOR datasets, and show
that our model can generate effective document features to improve
the retrieval performance.

CCS CONCEPTS
• Information systems → Learning to rank;

KEYWORDS
Learning to rank; autoencoders; semi-supervised learning

1 INTRODUCTION
Ranking is one of the central issues in information retrieval. Given
a query, information retrieval systems seek to rank the candidate
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documents based on their relevance to the given query. To solve the
problem, learning to rank has been proposed and proved effective to
learn powerful ranking models using supervised machine learning
methods [7, 9].

Like traditional machine learning methods, learning to rank en-
tails fix-length features vectors of documents as input, and outputs
ranking models by iteratively reducing the ranking loss. One of
the key issues for learning to rank is how to select the features for
different documents, which should not only reflect the character-
istics of the documents, but also model the relationships between
documents and the corresponding query. In most cases, classic
unsupervised ranking models or textual statistics can be used as
document features for learning to rank to produce relatively good
performance. In this sense, learning to rank can also be taken as
a way to combine different ranking models or textual statistics to
form a strong one. However, since the number of existed ranking
models and textual statistics is limited, it becomes more and more
difficult for enriching the feature space to enhance the learned
ranking models.

In recent years, deep learning methods exhibit powerful capabil-
ities in generating highly useful and compact features from struc-
tured information of data for many natural language processing
tasks [6, 10, 11]. Autoencoder [2], as one of the basic building
blocks for deep neural network-based framework, has been proven
effective in learning high-quality representations of data by re-
constructing the input and meantime retaining the inherent struc-
ture of the input. The reconstruction is achieved by optimizing the
pre-defined loss function for measuring the differences between the
input and the output. The loss function in reconstruction restricts
the learned feature keeping the data structure as much as possible.
Therefore, the reliability of an autoencoder can be estimated based
on its reconstruction capability.

Some previous studies have focused on learning effective fea-
tures for different tasks using autoencoders. For example, Zhai
et al. [13] proposed to model textual data using autoencoders by
introducing supervision via the loss function, and successfully im-
proved the performance of sentiment analysis. Motivated by their
work, we propose to employ autoencoders to enrich the feature
space for learning to rank. Specially, we first train a linear rank-
ing model to learn the importance degrees of the original features,
and then optimize the reconstruction loss based on the weights
from the linear ranking model to learn an autoencoder. Meanwhile,
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we accumulate the costs of documents for different queries using
defined query-level constraints to produce more useful features.
Based on the enriched features, we train ranking models and exam-
ine their usefulness. Experiments on LETOR datasets demonstrate
the effectiveness of our methods in generating effective document
features for improving the retrieval performance. Since our method
is general, it can be applied for different tasks to solve ranking
problems.

2 QUERY-LEVEL SEMI-SUPERVISED
AUTOENCODERS

In this section, we will introduce our method in detail. We first give
a brief introduction on denoising autoencoder, and then introduce
the loss function of semi-supervised autoencoders for learning to
rank. Finally, we define and incorporate the query-level constraints
into the loss function to enhance the reconstruction capability of
autoencoders for query-level performance.

2.1 Denoising Autoencoders
Autoencoders, as building blocks for deep neural networks, com-
prise one input layer, one output layer, and at least one hidden
layer. A well-performed autoencoder can encode its inputs as low-
dimensional representations in its hidden layer, and decode the
representations of the hidden layer as outputs for reconstructing
the original inputs. In other words, the aim of an autoencoder is
to learn a hidden code of original inputs, which reconstructs the
inputs with least deviations. Formally, the representations of the
hidden layer and the output layer can be formalized as follows.

y = f (W1x + b1) (1)

x̂ = f (W2y + b2) (2)

where W1 is the weight matrix between the input layer and the
hidden layer, W2 is the weight matrix between the hidden layer
and the output layer, and b1 and b2 are the biases for the hidden
layer and the output layer. Tied weights are usually used to speed
up the training and avoid overfitting when applying autoencoders
to different tasks, which means to set W1 = W2. We also adopt
tied weights in our experiments.

As one variant of traditional autoencoders, denoising autoen-
coders have been demonstrated effective and robust in many tasks,
which reconstructs a noised version of the inputs from the outputs
to learn more powerful representations of the original inputs. To
improve the performance of learning to rank, we adopt the denois-
ing autoencoder to learn robust and compact features of documents,
and extend the input space of learning to rank method with feature
representations y in the hidden layer of the denoising autoencoders.

2.2 Loss Function as Bregman Divergence
Loss function measures the differences between the inputs and the
outputs of an autoencoder, which is defined to target the learning
and generate effective feature representations. To learn a better
autoencoder for learning to rank, we attempt to adopt an effective
loss function to measure the reconstruction errors in the training

process, and optimize the autoencoder iteratively to produce high-
quality hidden representations. A general form of loss function for
an autoencoder can be defined as follows.

loss =
n∑
i=1

| |xi − x̂i | |
2
2 (3)

where n is the total number of instances in the training data. Eu-
clidean distance is often used to measure the differences between
the inputs and the outputs for an autoencoder. The learning target
is to minimize the loss and find the optimal parameters. Since the
loss function in Eq.(3) takes all the features of the inputs equally
to accumulate the losses, the performance may be limited because
different features contribute unevenly to characterize the inputs.
Therefore, it is necessary to take feature importance into consid-
eration to accumulate the losses in the reconstruction of an au-
toencoder. To this end, we introduce a modified version of loss
function of autoencoders based on Bregman divergence [1], which
has been demonstrated effective in a sentiment analysis task [13].
The modified loss function can be formalized as follows.

loss =
n∑
i=1

θT (xi − x̂i )
2 (4)

where θ is a vector of pre-trained weights on different features.
Based on this setting, the modified autoencoder can encode the
representations of the original data as more powerful representa-
tions in the hidden layers, where θ is learned based on a pre-trained
model. To reduce the loss, parameters including W1, W2, b1, b2
are optimized for learning effective hidden representations.

Motivated by this idea, we pretrain an initial linear ranker to
obtain the weights on different features in building autoencoders
to produce effective features for learning to rank. In the proposed
method, we use ListNet [4] to train the initial ranker. ListNet is a
listwise learning to rank method based on neural networks, which
is the listwise version of the pairwise method RankNet [3]. To
pre-train a linear ranking function, we employ a linear version of
ListNet as its scoring function, and train a ranking model to obtain
the weights on different features. Since we use the ground truth
labels to pretrain a linear ranker for supervised feature weighting,
and meanwhile train the denoising autoencoder in an unsupervised
way, our method can be considered as learning semi-supervised
denoising autoencoders.

2.3 Query-level Constraints
Unlike traditional machine learning tasks, the training data for
learning to rank consists of multiple subsets of documents, each
of which corresponds to one query. The learning target is to learn
a ranking model to improve the average performance for ranking
lists of documents to these queries. Although the loss function
defined in Eq. (4) takes the importance of different features into
consideration while learning the autoencoders, it ignore the query-
level constraints, which may be very important for learning to rank,
because documents with respect to different queries are incompa-
rable with each other. To deal with the problem, we attempt to
incorporate another item into the loss function of autoencoders
in consideration of the query-level constraints to produce more
effective document features. Since an autoencoder is designed to
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reconstruct the inputs by measuring the distance between its inputs
and its outputs, we attempt to model the query-level constraints by
measuring the differences of the query-level retrieval performance
between the inputs and the outputs.

Specifically, given a query, we use the pre-trained ranker based
on ListNet to measure the retrieval performance in terms of a cer-
tain evaluation measure. We record the retrieval performance both
for that based on the original features and for that based on the
extended feautres. Intuitively, the differences between the perfor-
mance based on the two feature sets can indicate the reconstruction
capability from the query level. Namely, if the performance varies
a lot, the reconstruction loss would be increased because the de-
viation may be large. We formalize the idea as follows in the loss
function.

loss =
∑
q∈Q

η(q)(

n(q)∑
i=1

θT (x̂i − xi )
2) (5)

where η(q) measures the differences of the changes on retrieval
performance, and n(q) is the number of documents corresponding
to the query q. We accumulate the losses across all the queries
in the training set by iterations. To reduce the loss, parameters
includingW1,W2, b1, b2 are optimized for learning effective hidden
representations. η(q) can be defined as follows.

η(q) =
|Evalor i − Evalr ec |

Evalor i
(6)

where Evalor i and Evalr ec are the retrieval performance of the
original inputs and the reconstructed outputs of an autoencoder
evaluated by any given IR evaluation measure denoted as Eval . We
estimate the performance by applying the ListNet-based ranker on
the corresponding features. Any evaluation measures can be used
to measure the differences. Based on the equation, we incorporate
query-level constraints of learning to rank into the loss function of
the modified autoencoders for learning more effective document
features.

3 EXPERIMENTS AND ANALYSIS
3.1 Experimental Settings
We examine the effectiveness of our method on three LETOR1
datasets released by Microsoft Research Asia, i.e. the OHSUMED
collection, the MQ2007 collection and the MQ2008 collection. We
adopt P@k , NDCG@k (short for N@k) and Mean Average Preci-
sion (MAP) as evaluation measures to evaluate the ranking per-
formance. Five-fold cross validations are performed based on the
standard divisions of these datasets. For the query-level constraint,
we take NDCG@10 as the evaluation measure Eval to compute the
query-level loss during model training. We take autoencoders with
different constraints as baseline models for learning the features,
including naive autoencoders, sparse autoencoders [8] and denois-
ing autoencoders [12]. We extend the feature spaces of original
datasets to train different ranking models for comparisons.

1http://research.microsoft.com/enus/um/people/letor/

Table 1: Retrieval performance of retrieval models based on
different extended features on three datasets. Significant im-
provement of the proposed models with respect to the base-
line models (oriдinal) (two-tailed paired t test, p ≤ 0.05) is
indicated with a dagger† .

OHSUMED P@3 P@10 N@3 N@10 MAP

oriдinal 0.6016 0.4975 0.4732 0.4410 0.4457
naive 0.4969 0.4811 0.4019 0.4056 0.4298
sparse 0.5252 0.4925 0.4310 0.4234 0.4364
denoisinд 0.5063 0.4925 0.4312 0.4294 0.4381
SA 0.5881 0.5094† 0.4784† 0.4535† 0.4505†

QSA 0.6132† 0.5142† 0.4961† 0.4574† 0.4537†

MQ2007 P@3 P@10 N@3 N@10 MAP

oriдinal 0.4334 0.3798 0.4091 0.4440 0.4652
naive 0.3974 0.3512 0.3686 0.4047 0.4362
sparse 0.4375 0.3788 0.4136 0.4457 0.4677
denoisinд 0.4352 0.3788 0.4131 0.4460 0.4683
SA 0.4379 0.3785 0.4130† 0.4456 0.4697†

QSA 0.4450† 0.3819† 0.4195† 0.4496† 0.4720†

MQ2008 P@3 P@10 N@3 N@10 MAP

oriдinal 0.3835 0.2476 0.4324 0.2303 0.4775
naive 0.3618 0.2394 0.4009 0.2112 0.4528
sparse 0.3941 0.2490 0.4401 0.2330 0.4867
denoisinд 0.3946 0.2473 0.4385 0.2291 0.4850
SA 0.3958† 0.2481 0.4428† 0.2322† 0.4881†

QSA 0.3984† 0.2487† 0.4433† 0.2333† 0.4929†

3.2 Overall Retrieval Performance of Different
Autoencoders

We first report the overall retrieval performance of different autoen-
coders on three datasets in Table 1, where ListNet is used both for
learning the pre-trained rankers and for learning the final ranking
models. In the table, oriдinal stands for the ranking models solely
based on the original features without extension. naive , sparse and
denoisinд stand for the ranking models based on the extended fea-
tures by naive autoencoders, sparse autoencoders and denoising
autoencoders, respectively. SA andQSA stand for the ranking mod-
els based on the extended features by semi-supervised autoencoders
with and without query-level constraints, respectively.

From the table, we can see that ranking model based on original
feature set outperforms those based on either naive autoencoders
or autoencoders with sparse or denoising constraints, which indi-
cates that directly applying autoencoders to learn extra document
features is of little use to improve the performance. The perfor-
mance can be enhanced when incorporating semi-supervised fea-
ture weighting and further enhanced with semi-supervised query-
level autoencoders. One possible explanation for this can be that
our method learns useful and implicit information of documents,
which cannot easily been captured with only original document
features, thus enhancing the retrieval performance.

Short Paper CIKM’17, November 6-10, 2017, Singapore

2397



Table 2: Retrieval performance of ranking models using dif-
ferent learning to rank methods on OHSUMED dataset. The
values in parentheses are the relative rates of improvement
of the extended feature set over the original feature set. Sig-
nificant improvements are marked with a dagger† .

Method P@3 p@10 N@3 N@10 MAP

RFor i 0.5000 0.4755 0.3966 0.3976 0.4269
RFext 0.5818† 0.4953† 0.4645† 0.4389† 0.4350†

(16.35%) (4.17%) (17.13% ) (10.38%) (1.91%)

RBor i 0.5609 0.4966 0.4555 0.4302 0.4411
RBext 0.6195† 0.5038† 0.4897† 0.4484† 0.4478†

(10.45%) (1.44%) (7.51%) (4.24%) (1.52%)

LNor i 0.6016 0.4975 0.4732 0.4410 0.4457
LNext 0.6132† 0.5142† 0.4961† 0.4574† 0.4537†

(1.93%) (3.35%) (4.85%) (3.72%) (1.81%)

3.3 Retrieval Performance of Different
Learning to Rank Methods

We then examine the performance of our method using different
learning to rank methods, including Random Forests (RF), Rank-
Boost [5] (RB), ListNet [4](LN). These methods are used to construct
the final ranking models in the experiment, and due to the limited
space we only give the results on OHSUMED dataset in Table 2,
where ori stands for the ranking models learned with the origi-
nal features, and ext stands for the ranking models learned with
extended features using ListNet-based pretraining.

Based on the experimental results, we find that ranking models
can achieve better performance when learned with the extended
features across different learning to rank methods, which indicates
that the learned document features by our method are effective to
improve the retrieval performance.

3.4 Impact of Dimensionality
We also examine the impact of dimensionality of learned features
on the retrieval performance, shown in Fig.1. In the figure, horizon-
tal axis stands for the percentage of new features compared to the
original features, and the vertical axis stands for the retrieval per-
formance evaluated by MAP. From the results, we find that when
the number of new learned features amounts to sixty or seventy
percent of the number of original features, we can achieve the best
performance on the datasets.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a novel method to construct query-level
semi-supervised autoencoders for learning to rank to learn effective
document features. In the method, we pre-train a ListNet-based
ranker to give weights on original features, and incorporate query-
level constraints into the loss function to improve the effectiveness
of the learned features. Experimental results show that our method
outperforms different autoencoder-based models for learning docu-
ment features, and enhances the ranking performance for different
learning to rank methods over the original feature set. We will

Figure 1: Impact of dimensionality of the learned features

carry out our future work by improving our method with further
optimizations and investigating the effectiveness of the learned
features in some domain-specific IR tasks.

ACKNOWLEDGMENTS
This work is partially supported by grant from the Natural Science
Foundation of China (No. 61632011, 61572102, 61402075, 61602078,
61572098), the Ministry of Education Humanities and Social Science
Project (No. 16YJCZH12), the Fundamental Research Funds for
the Central Universities, the National Key Research Development
Program of China (No. 2016YFB1001103).

REFERENCES
[1] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. 2004.

Clustering with Bregman Divergences. Journal of Machine Learning Research 6,
4 (2004), 1705–1749.

[2] Yoshua Bengio. 2009. Learning Deep Architectures for AI. Foundations and Trends
in Machine Learning 2, 1 (2009), 1–127.

[3] Chris J C Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Greg Hullender. 2005. Learning to rank using gradient descent.
International conference on machine learning (ICML) (2005), 89–96.

[4] Zhe Cao, Tao Qin, Tie Yan Liu, Ming Feng Tsai, and Hang Li. 2007. Learning to
rank: from pairwise approach to listwise approach. International conference on
machine learning (ICML), 129–136.

[5] Yoav Freund, Raj D Iyer, Robert E Schapire, and Yoram Singer. 1998. An Efficient
Boosting Algorithm for Combining Preferences. International conference on
machine learning (ICML), 170–178.

[6] Posen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.
2013. Learning deep structured semantic models for web search using click-
through data. ACM international conference on information and knowledge man-
agement (CIKM) (2013), 2333–2338.

[7] Tieyan Liu. 2009. Learning to Rank for Information Retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331.

[8] Andrew Ng. 2011. Sparse autoencoder. CS294A Lecture notes 72, 2011 (2011),
1–19.

[9] Tao Qin, Tie Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection
for research on learning to rank for information retrieval. Information Retrieval
Journal 13, 4 (2010), 346–374.

[10] Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to Rank Short Text
Pairs with Convolutional Deep Neural Networks. International ACM SIGIR
conference on research and development in information retrieval(SIGIR) (2015),
373–382.

[11] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Gregoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. International world wide web conferences (WWW) (2014), 373–374.

[12] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierreantoine Manzagol.
2008. Extracting and composing robust features with denoising autoencoders.
(2008), 1096–1103.

[13] Shuangfei Zhai and Zhongfei Zhang. 2016. Semisupervised Autoencoder for
Sentiment Analysis. The association for the advancement of artificial intelligence
(AAAI) (2016), 1394–1400.

Short Paper CIKM’17, November 6-10, 2017, Singapore

2398


	Abstract
	1 Introduction
	2 Query-level Semi-supervised Autoencoders
	2.1 Denoising Autoencoders
	2.2 Loss Function as Bregman Divergence
	2.3 Query-level Constraints

	3 EXPERIMENTS AND ANALYSIS
	3.1 Experimental Settings
	3.2 Overall Retrieval Performance of Different Autoencoders
	3.3 Retrieval Performance of Different Learning to Rank Methods
	3.4 Impact of Dimensionality

	4 CONCLUSIONS AND FUTURE WORK
	Acknowledgments
	References



