
Assessment of Learning to Rank Methods for
Query Expansion

Bo Xu, Hongfei Lin, and Yuan Lin
Department of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.

E-mail: xubo2011@mail.dlut.edu.cn; hflin@dlut.edu.cn; zhlin@dlut.edu.cn

Pseudo relevance feedback, as an effective query
expansion method, can significantly improve informa-
tion retrieval performance. However, the method may
negatively impact the retrieval performance when some
irrelevant terms are used in the expanded query. There-
fore, it is necessary to refine the expansion terms.
Learning to rank methods have proven effective in infor-
mation retrieval to solve ranking problems by ranking
the most relevant documents at the top of the returned
list, but few attempts have been made to employ learn-
ing to rank methods for term refinement in pseudo
relevance feedback. This article proposes a novel frame-
work to explore the feasibility of using learning to rank
to optimize pseudo relevance feedback by means of
reranking the candidate expansion terms. We investi-
gate some learning approaches to choose the candidate
terms and introduce some state-of-the-art learning to
rank methods to refine the expansion terms. In addition,
we propose two term labeling strategies and examine
the usefulness of various term features to optimize the
framework. Experimental results with three TREC collec-
tions show that our framework can effectively improve
retrieval performance.

Introduction

When a user submits a query to a search engine, he may

fail to obtain what he desires because the query is ambigu-

ous and difficult for the search engine to understand clearly.

To interpret the query better, query refinement methods have

been developed to reformulate the query by incorporating or

removing some query terms, thus improving the retrieval

performance, which can be divided into two categories

based on the query length. For a long query, query refine-

ment methods have usually been designed to remove some

irrelevant or redundant query terms; for a short query, the

methods are developed to add some relevant terms to expand

the original query. Meanwhile, to reformulate the query

better, query terms usually acquire different weights based

on their degree of relevance to the main idea of the original

query. Here our research is focused mainly on the query

expansion methods.

Pseudo relevance feedback (PRF), one of the query

expansion methods, obtains its expansion terms from top-

ranked documents of the initial retrieval and has been widely

used in information retrieval (IR; Cao, Nie, Gao, &

Robertson, 2008; Lee, Croft, & Allan, 2008; Lv, Zhai, &

Chen, 2011; Rocchio, 1971; Tao & Zhai, 2006; Xu & Croft,

1996). However, some of the expansion terms used in PRF

may negatively impact the retrieval performance because

they tend to be irrelevant to the original query. Therefore, it

is necessary to exclude the irrelevant terms and to reformu-

late the query better.

To refine the expansion terms, some approaches are

needed to distinguish the relevant terms from the irrelevant

ones among a large set of candidate expansion terms. In IR,

learning to rank methods solve ranking problems by

employing machine learning techniques and have been

proved powerful for improving retrieval performance (Liu,

2009; Qin, Liu, Xu, & Li, 2010). In fact, ranking, as the

central issue of IR, aims to generate a list of documents

based on the degree of relevance to a given query. In the list,

a document with a higher relevance degree is ranked before

the one with a lower relevance degree. Therefore, learning to

rank methods, as effective ranking algorithms, can help to

distinguish relevant documents from irrelevant ones.

However, few studies have attempted to apply learning to

rank methods to the term refinement for query expansion.

Given that, we investigate whether learning to rank methods

can help in choosing more useful expansion terms.

We propose a query expansion framework based on PRF,

in which learning to rank methods are introduced to refine

Received June 21, 2014; revised November 4, 2014; accepted November

12, 2014

© 2015 ASIS&T • Published online in Wiley Online Library

(wileyonlinelibrary.com). DOI: 10.1002/asi.23476

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, ••(••):••–••, 2015

VC 2015 ASIS&T � Published online 2 April 2015 in Wiley Online

Library (wileyonlinelibrary.com). DOI: 10.1002/asi.23476

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 67(6):1345–1357, 2016

the expansion terms. First, given the original query, we

conduct initial retrieval to obtain some top-ranked docu-

ments. Then, from these documents, we choose a large set of

frequently appearing terms as our candidate expansion

terms. Next, we refine the terms using learning to rank

methods. Finally, after the refinement, more useful terms are

chosen to reformulate the query, and results are retrieved

again.

The contributions of this work are as follows: (a) to

present the usefulness of expansion terms, we propose two

term truth labeling strategies; (b) we define a large set of

term features and examine their effectiveness based on their

different combinations; and (c) we examine and compare

several state-of-the-art learning to rank methods for term

refinement.

Related Work

Query refinement methods have been studied for years

and can be divided into two categories based on the query

length. For a long query, methods have been developed to

remove or reduce the weights of some redundant query

terms. For example, Jones and Fain (2003) attempted to

predict and remove some useless query terms based on

query logs. Kumaran and Allan (2008a, 2008b) tried to find

optimal subqueries by using maximum spanning tree

weighted by mutual information. For a short query, methods

have been developed to expand the query with some

query-related terms. Query expansion methods, especially

PRF, have been widely used in IR (Buckley, 1994;

Cronen-Townsend, Zhou, & Croft, 2004; Metzler & Croft,

2007; Xu & Croft, 1996). Traditional PRF has been imple-

mented in retrieval models such as the vector space model

(Rocchio, 1971), probabilistic model (Robertson, Walker,

Beaulieu, Gatford, & Payne, 1996), relevance model

(Lavrenko & Croft, 2001), and mixture model (Zhai &

Lafferty, 2001). Some previous studies have attempted to

improve PRF in terms of document refinement. For

example, Lee et al. (2008) proposed a clustered-based resa-

mpling method to generate pseudo relevance documents,

where dominant documents for a topic can be sampled. Lv

et al. (2011) developed a boosting approach, Feedback-

Boost, to accommodate many basic feedback methods using

a boosting approach. Unlike these studies, our method

improves the effectiveness of PRF by refining expansion

terms.

Because different terms play different roles in a query,

some studies have been focused on term weighting. Lease,

Allan, and Croft (2009) developed a supervised learning

method, Regression Rank, for term weighting in descriptive

queries. Similarly, they introduced an improved Markov

random field model to deal with verbose queries (Lease,

2009). Although their methods are not designed to expand

the query, they inspired us to select expansion terms in a

supervised way. Lee, Chen, Kao, and Cheng (2009) intro-

duced a rich set of linguistic and statistical features to

explore the underlying relationship among query terms. Cao

et al. (2008) introduced a classification method to select

good expansion terms from a large set of terms. In compari-

son with their methods, we adopt ranking methods to choose

the expansion terms. Ranking methods can explicitly get the

sorted term list to select the most useful terms directly, so

they may be a better choice for refining the terms.

Many tasks in IR and text mining can be solved by using

ranking methods. For example, question answering systems

answer a question by ranking many candidate answers

(Surdeanu, Ciaramita, & Zaragoza, 2008), and recom-

mender systems provide users with appropriate items by

ranking the preference information (Sun, Wang, Gao, & Ma,

2012). To solve the ranking problem, learning to rank

methods have been proposed and proved effective to

improve retrieval performance (Burges, 2010; Burges,

Ragno, & Le, 2006; Cao et al., 2006; Freund, Lyer,

Schapire, & Singer, 2003; Joachims, 2002; Wu, Burges,

Svore, & Gao, 2008; Xu & Li, 2007).

Some studies have optimized the process of query expan-

sion by using ranking methods. Lin, Lin, Jin, and Ye (2011)

exploited social annotations as the source of expansion

terms for enriching the query. Similarly, Oliveira et al.

(2012) introduced unsupervised tag recommendation

methods to expand entity-related queries from Wikipedia

articles. Our framework has two main differences when

compared with these. The first is the source of expansion

terms. Instead of obtaining expansion terms from external

sources, we obtain our candidate expansion terms from the

top-ranked documents, namely, the feedback documents,

focusing on the improvement of PRF. The second difference

is that we compare various state-of-the-art learning to rank

methods for query expansion, seeking to develop better term

ranking models.

Methods

This section formulates our query expansion framework

in detail. As mentioned above, top-ranked documents of

initial retrieval are used as the source of candidate expansion

terms in our framework, which contains many useful terms

that can help in interpretinjg the query. First, we introduce a

term-dependence method to choose candidate terms from

these documents. Second, we measure the relevance degree

of each term to the original query and represent the terms as

feature vectors for supervised learning. Finally, we rank

terms based on learning to rank methods and choose the final

expansion terms from the top of the term ranking list.

Candidate Term Selection

Before presenting our term ranking method for expansion

term refinement, we first introduce a method to choose can-

didate expansion terms from top-ranked documents, namely,

the feedback documents. Inspired by the work of Lin et al.

(2011), which develops a term-dependence method to

choose a set of expansion terms from social annotation

resources and achieves relatively high retrieval performance,

2 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015

DOI: 10.1002/asi
1346 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

we introduce the term-dependence method to choose candi-

date terms from feedback documents as the first step.

The term-dependence method leverages the co-

occurrence information of the query and an expansion term

to measure the importance and relevance of each term and

then chooses the terms with the highest dependence scores

as candidate terms. Two dependence situations are taken

into consideration while measuring term relevance: term

co-occurrence with one query term and with two neighbor-

ing query terms. They are denoted as the full independence

(FI) method and the sequential dependence (SD) method.

The final term-dependence (TD) method is the linear inter-

polation of the two methods (Lin et al., 2011).

In the first presentation of the method, terms are obtained

from a social annotation collection, which is a manually

edited thesaurus and provides a wealth of information about

relevant terms. Instead of using an annotation collection, we

use the feedback documents as the source of candidate

terms. Statistics given by Lin et al. (2011) show that both the

proportion of good terms and the proportion of bad terms are

increased by using the social annotation information com-

pared with feedback documents, which indicates that,

although more potential good terms may be selected for

query expansion, the potential of choosing bad terms for

expansion is also increased; that is to say, it may be more

difficult to discriminate the good from the bad terms in

further selection. Therefore, we obtain the candidate expan-

sion terms from feedback documents. For one thing, a

search engine has easier access to feedback documents

during the retrieval process, especially for query expansion.

For another, the decrease of the proportion of bad terms in

feedback documents could reduce the degree of difficulty in

further selection and facilitate term refinement, so we apply

the TD method to feedback documents.

Term Labeling Strategies

To rank terms in a supervised way, we should label terms

as relevant or not, so that in the training process we can

generalize information from past queries to predict new

ones. We propose two strategies to form a ground truth label

for each term.

Intuitively, good expansion terms can improve retrieval

performance when added to the original query, and bad

terms can hurt the retrieval performance. Based on this idea,

our first labeling strategy is as follows. For a given query and

a candidate term with respect to the query, we measure the

usefulness of the term based on the mean average precision

(MAP) change when adding the term to the query. Specifi-

cally, a term is labeled relevant when the value of MAP

increases after adding it to the original query and irrelevant

when the value of MAP decreases. We label a term 1 or 0,

indicating relevance or irrelevance.

Because binary relevance degree has limited capability in

expressing term relevance for ranking, we introduce some

measures to form multiple relevance degrees for each term.

To measure the relevance further, we take the number of

terms used for query expansion into account when

labeling a term because our term ranking goal is to find

the most k relevant terms. Table 1 presents the labeling strat-

egy, where k is the number of terms we choose for query

expansion.

Terms are sorted by the change of MAP values and

rank(t), where rank(t) is the position of term t in the sorted

list. Label 2 implies that the term is definitely relevant to the

query, label 1 implies that it is possibly relevant, and label 0

implies that it is irrelevant. Ideally, the top k terms in the list

should be selected for query expansion.

In our experiment, we tune the parameter k based on the

retrieval performance of the original PRF method and

choose the optimal value when the performance is highest.

Meanwhile, the value of k is also used as the number of

terms chosen from the ranking list of candidate terms in the

expanded queries.

Term Ranking Features

Unlike traditional application of learning to rank

methods, terms are represented here instead of documents as

feature vectors to train a term ranking model. Therefore, we

define some candidate term features in this section. Term

features refer to the statistical information about the term in

a document collection. Intuitively, term features should not

only distinguish the candidate terms from each other based

on the term distribution information but also imply term

relevance to the query so that ranking methods can work

more efficiently. Based on the idea, some term features are

defined and their usefulness is investigated. Some notations

and definitions of features are listed in Tables 2 and 3.

To measure the importance of terms in the whole collec-

tion, we introduce some classic statistical information in IR

as term features for learning to rank (Qin et al., 2010). Term

TABLE 1. Truth table of labeling on terms.

label(t) MAP(q ∪ t) − MAP(q) ≥ 0 rank(t) ≤ k

2 True True

1 True False

1 False True

0 False False

TABLE 2. Notations for term features.

Parameter Description

T = t1, . . ., tm, i A set of candidate terms, size m, indexed by i

Q = q1, . . ., qn, j Query Q of length n, indexed by j

pair(Q), k Query term pairs in query Q, size l, indexed by k

C, N The whole collection C containing N documents

S, M The feedback collection S containing M documents

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 3

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

1347

frequency (tf) and document frequency (df) are related to the

term itself and take into account the term occurrences and

number of documents with a term. We define features 1–4

based on those to model term ubiquity and specificity,

respectively. Inverted document frequency (idf) is widely

used in vector space models to express the importance of a

term. We define features 5 and 6 based on idf.

To capture the relationship between a term and a query,

we define some features based on co-occurrence.

Co-occurrence refers to two terms appearing in the same

document. In other words, if a candidate term and a query

term co-occur more times, the relationship between them

would be closer. Furthermore, when a term co-occurs with a

pair of query terms more times, it indicates that the term is

more likely related to the query. This co-occurrence relation

takes into consideration more query context and may be

better evidence to present co-occurrence. We accumulate the

instances of term co-occurrences with all the query terms

and all the query term pairs to express the relationship

between a term and a query. We define features 7–10 based

on this idea.

Our experiments use the collections in standard TREC

format, which contains several fields for each document. For

example, each document in the Robust2004 collection

includes the title field, the text field, and the dateline field.

Terms appear in different fields and so gain distinct impor-

tance. For example, a term that appears in the title field

obviously gains more importance in comparison with one

appearing in the text field, and also the co-occurrence of a

term and a query in the title of a document indicates that they

are more relevant, so we extract features both from every

single field and from the entirety of all the fields. That is to

say, we draw features 1–10 from the title field, the text field,

the dateline field, and all the fields as different features in the

feature set.

Term proximity assumes two terms that co-occur more

closely are more relevant to each other, which can help

measure the importance of a term with respect to a query. So

we define feature 11 as the number of documents in which

two terms co-occur within a certain window size. The

window size is empirically set to be 5 and 10 words, respec-

tively, which is the same setting used by Lease et al. (2009).

In PRF, we obtain some feedback documents based on

the query language model (Ponte & Croft, 1998) and assume

that these documents are relevant to the query. Term infor-

mation obtained from feedback documents may be useful

for term ranking, so we define some features based on feed-

back documents. Features 12 and 13 are related to term

frequencies in the feedback documents set. Feature 14 is the

score of a term based on the TD method. Moreover,

co-occurrence is considered in feedback documents in the

definitions of features 15 and 16. Because the candidate term

and query term co-occur in these documents, we count their

co-occurrences when they appear within a certain window

size, where the window size refers to the number of terms

between them. The text window size used here is 15 words.

Term frequency-inverse document frequency (tf-idf) is a

numerical statistic that reflects how important a term is to a

document in a collection. It is often used as a weighting

factor in information retrieval and text mining. We define

features 17–19 based on tf-idf.

In addition, because a given statistic will be more reliable

after normalization, we normalize all the feature values to

the interval [0–1]. As we extract features 1–10 from three

TABLE 3. Feature definitions for expansion terms.

Feature template ID Type Definition

Overall term frequency: tf(T, C) 1 Integer tf(ti, C): raw frequency of ti in C

2 Real log(tf(ti, C))

Document frequency: df(T, C) 3 Integer df(ti, C): No. of documents in C containing ti

4 Real log(df(ti, C))

Inverse document frequency: idf(T, C) 5 Real log((N − df(ti, C) + 0.5)/(df(ti, C) + 0.5))

6 Real log(idf(ti, C))

Co-occurrence with query terms:

cooccurence(T, Q, C)

7 Integer cooccurence t q Ci j
j

n

(, ,)
=∑ 1

: co-occurrence of ti and qi

8 Real log cooccurence t q C ni j
j

n

(, ,)
=∑()1

9 Integer cooccurence t pair Q Ci k
k

l

(, (),)
=∑ 1

: co-occurrence of ti and pair(Qk)

10 Real log cooccurence t pair Q C li k
k

l

(, (),)
=∑()1

Term proximity: proximity(T, Q, C) 11 Integer proximity(T, Q, C): No. of documents in C containing ti and qi within a certain window size

Feedback term frequency: tf(T, S) 12 Integer tf(ti, S): raw frequency of ti in S

13 Real log(tf(ti, S))

Term-dependence score 14 Real The scores of terms based on term-dependence method

Co-occurrence with proximity:

cooccurence(T, Q, S)
15 Integer cooccurence t q Si j

j

n

(, ,)
=∑ 1

: co-occurrence of ti and qi within a certain window size

16 Integer cooccurence t pair Q Si k
k

l

(, (),)
=∑ 1

tf-idf 17 Real tf(ti, S) * idf(ti, C)

18 Real log(tf(ti, S) * idf(ti, C))

19 Real log(tf(ti, S) * df(ti, C))

4 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015

DOI: 10.1002/asi
1348 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

single fields and the whole document, and features 11–19

from the whole document set, we finally obtain

(10 × 4) + 9 = 49 term features to represent a term as a

feature vector.

Learning to Rank Expansion Terms

The learning to rank approach uses machine learning

techniques to construct a ranking model automatically. The

resulting model ranks new objects according to the rel-

evance degrees assigned in the model. Specifically, the

model for term ranking has two general properties. The

first is that it is feature-based, which means that all

the terms are represented as feature vectors that can reflect

the relevance of the terms to the query. The other is

that the learning process is a discriminative training

process like traditional machine learning methods (Liu,

2009). A discriminative training process can combine dif-

ferent kinds of term features without the necessity for

defining a probability about the terms and the correctness

of prediction.

In particular, learning to rank is grouped into three

approaches: the pointwise approach, the pairwise approach,

and the listwise approach. Different approaches model the

learning to rank process in different ways.

The pointwise approach is a straightforward way to

solve ranking problems with machine learning technolo-

gies. When ranking with pointwise methods, one assumes

that the exact relevance degree of each term is what we are

going to predict, even though it may not be necessary

when the target is to produce a ranked list of terms.

Regression is used as a pointwise learning to rank method

to reduce the ranking problem to a regression problem,

which takes every single term feature vector as input and

outputs the relevance degree of each term. We use the

version of regression implemented in SVMlight (Joachims,

1999) to investigate the effectiveness of the pointwise

approach for query expansion.

The pairwise approach does not focus on accurately

predicting the relevance degree of each term; instead, it

concerns the relative order of two terms. In this sense, it is

closer to the concept of ranking than the pointwise

approach. RankSVM (Cao et al., 2006; Joachims, 2002) is

a pairwise learning to rank algorithm, which utilizes

support vector machine (SVM) for the ranking task. It

inherits good properties from SVM because it is well

rooted in the SVM framework, which formalizes learning

to rank as a problem that classifies instances into catego-

ries with different relevance degrees. In our experiment,

we use the implementation of RankSVM, SVMrank, pre-

sented by Joachims (2006). RankBoost (Freund et al.,

2003) combines preferences based on the boosting

approach to machine learning. It utilizes the object pairs

with preferences as instances in its training process.

Similar to other boosting algorithms, RankBoost operates

in rounds and works by combining many weak learners,

which are weakly correlated with the target ranking model.

The final ranking model of RankBoost is an ensemble of

all the weak learners. We implement RankBoost according

to Freund et al. (2003) and investigate the effectiveness of

pairwise methods for term ranking based on RankSVM

and RankBoost.

The listwise approach takes the ranking list as objects for

calculating the difference between permutations using a list-

wise loss function or directly optimizing IR evaluation mea-

sures. We use LambdaMART (Burges, 2010; Wu et al.,

2008) to investigate the listwise approach for term ranking.

LambdaMART is the boosted tree version of LambdaRank

(Burges et al., 2006), which is based on gradient boosting

(Friedman, 2001), and has been shown to be among the best

performing learning methods on public data sets in Track 1

of the 2010 Yahoo! Learning to Rank Challenge. Lambda-

MART combines MART and LambdaRank. The resulting

model of MART is the linear combination of the outputs

with respect to a set of regression trees. LambdaMART uses

λ as the gradient of loss function and uses a boosted regres-

sion tree as its model to decrease ranking loss in iterations as

MART does. In our experiments, we use the version of

LambdaMART implemented by Ganjisaffar, Caruana, and

Lopes (2011). Readers can refer to Burges (2010) for the

details of this algorithm.

We present our query expansion framework in Figure 1,

where LTR methods refer to learning to rank methods. First,

we conducted an initial retrieval and obtained a set of can-

didate expansion terms from feedback documents. Second,

we extracted features and ground truth labels with respect to

the terms to construct term feature vectors. Next, we trained

term ranking models to refine the candidate terms. Finally,

the resulting model was employed to rank terms and refor-

mulate the original query.

FIG. 1. Query expansion framework based on learning to rank.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 5

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

1349

Experiments and Analysis

Experimental Settings

This section evaluates our query expansion framework on

three standard TREC collections: Robust2004 (the data set

of the TREC Robust Track started in 2003), WSJ87–90

(Wall St. Journal), and AP88–90 (Associated Press). We

choose the three TREC collections to facilitate comparison

with other work because these collections are public data

sets. Since our framework is general, other collections can

also be applied. We used all the topics in these collections

for our experiments, in which title fields of the topics are

used as the original queries. The average length of original

queries for the Robust2004 collection is 2.55 words,

whereas the average length for AP and WSJ collections is

5.15 words. Table 4 shows the statistics for these collections.

The Indri search engine (Strohman, Metzler, Turtle, &

Croft, 2004) is used as the basic retrieval system in our

experiments. From initial retrieval based on Indri-

implemented language modeling, we take the top-N docu-

ments in the result list as feedback documents and obtain M

candidate terms from them based on TD methods. We stem

the terms with the Porter stemmer and remove the stop

words using a standard InQuery stoplist in advance. Then,

we rerank the terms using a term ranking model to form a

new term ranking list, the top-k terms of which will be

selected for query expansion. The query is reformulated

with the following query language structure of Indri:

((.) # (weight Q combine weight

term weight term

originalλ λ1 0 1

1 2 2

−
…… weight termk k)),

(1)

where the first item is the weighted original query in the

expanded query, and the second item is a list of expansion

terms in which terms are weighted according to the scores

given by the term ranking model. Term weights are normal-

ized to the interval [0–1] to make fair comparisons for dif-

ferent ranking models because the term ranking scores

obtained from different ranking models are quite varied. λ is

the weight for the original query. We fix the parameter as

M = 150, N = 10, k = 50, λ = 0.5 because relatively good

performance is achieved in this setting.

To evaluate the retrieval performance, we adopt MAP for

the top 1,000 documents retrieved, precision on the top k

documents (P@k), and normalized discounted cumulative

gain of the top N documents (NDCG@k) as evaluation mea-

sures. In the term ranking experiments, for each collection,

we divide its topics by query numbers into three parts, the

training set, the validation set, and the testing set. We

conduct fivefold cross-validation experiments, each using

60% of the queries for training a term ranking model, 20%

for estimating the parameters, and 20% for predicting new

queries. Four learning to rank methods, regression, Rank-

Boost, RankSVM, and LambdaMART, are investigated for

term ranking.

Baseline Models

This section introduces some baseline models used in our

experiments. The first is the query-likelihood language

model (QL; Zhai & Lafferty, 2001). The second is Lavren-

ko’s relevance model (RM; Lavrenko & Croft, 2001), which

selects the top k most likely terms obtained from N feedback

documents to form an expanded query. We use the versions

of these two models implemented in Indri. Furthermore, we

compare our framework with the method presented by Cao

et al. (2008), which treats a term selection problem as a term

classification problem and can be seen as a strong baseline.

Compared with term classification, query expansion based

on term ranking adopts learning to rank approaches to obtain

a sorted term list scoring from high to low. Our framework

is developed to choose the most relevant expansion terms

from the top of the list and give weight to each term based on

the ranking score. We fix the experimental setting the same

to facilitate the comparison between the term classification

method and the term ranking method. In the classification

method, first we choose a set of candidate expansion terms

based on the TD method and then use the multiple relevance

labeling strategy to label the terms. Next, we use the imple-

mentation of SVMlight (Joachims, 1999) to train an SVM

classifier for terms to choose the good terms for expansion.

In the reformulated query, terms are weighted based on the

posterior probability given by the classifier. We also conduct

fivefold cross-validation for classification methods to facili-

tate the comparison. In the next few subsections, we give

some details on how our query expansion framework works

and some analysis of experimental results.

Performance of the TD Method

Before evaluating the term ranking framework for term

selection, let us first evaluate the performance of the

methods based on FI and SD, respectively. We adopt linear

interpolation to combine FI and SD as the TD method. We

examine these three methods to choose a set of candidate

terms for expansion and show the experimental results in

Figure 2 for all topics in three TREC collections together

with retrieval performance of baseline models in terms of

MAP.

As we can see from Figure 2, the relevance model can

significantly improve the retrieval performance over the

query likelihood model. In comparisons of FI, SD, and TD

methods, we can see that, although both the FI and SD

methods boost retrieval performance of QL to a great extent,

they perform as well as RM, and TD as the combination of

TABLE 4. Statistics of evaluation collections.

Collection No. of documents Topics

Robust2004 528,155 301–450

AP 242,198 51–200

WSJ 173,252 51–200

6 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015

DOI: 10.1002/asi
1350 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

the two methods enhances the performance of RM further.
The results show that the TD method can help choose a set
of more relevant terms and boost retrieval performance
applied for feedback documents and considering only that
query terms are either fully independent or sequentially
dependent with each other is not sufficient to express the
relationship between terms and a query. The TD method
combines the two comprehensively and thus has better per-
formance. We fix the interpolation parameter for each col-
lection as λWSJ = 1.0, λAP = 0.7, and λRobust = 0.6 because
better retrieval performance can be achieved in this setting,
which contributes more to further selection of terms.

Term Labeling Strategy Evaluation

We have proposed two strategies to give relevance labels
to candidate terms. The first labels terms merely according
to their impact on retrieval performance, where a relevant
term is the one that can improve retrieval performance when
added to the query. We denote this strategy as Impact_only.
The second labels terms in consideration of both the impact
and the number of expansion terms parameterized as k, by
which we label terms with three relevance degrees, defi-
nitely relevant, possibly relevant, and irrelevant. We denote
this strategy as Impact_k.

This section compares and analyzes the experimental
results with these two strategies. Table 5 shows the retrieval
performance of term ranking models based on both strate-
gies in terms of MAP on each collection, and LambdaMART
is used for term ranking. To improve readability, we show
the best results in italics for each method in Table 5, which
is the same in the next subsections.

From Table 5, we can see that Impact_k performs much
better and more steadily than Impact_only. Our explanation
is that, since number of candidate terms with positive impact
varies widely on queries, top-ranked terms may not be effec-
tively distinguished from others in the training process based
on the Impact_only strategy, especially for the queries with
more relevant candidate terms. The Impact_k strategy solves
this problem by balancing the impact and the number of
expansion terms, so it is more beneficial for learning to rank
terms.

Feature Selection

We have defined some term features in the previous
section. They differ from each other in their effectiveness for
term ranking, so we investigate their usefulness for term
ranking in this section based on retrieval performance for
query expansion. We examine the usefulness on the WSJ
collection, and LambdaMART is used for training term
ranking models.

First, we classify the features into six categories pre-
sented in Table 6 corresponding to the feature IDs in
Table 3. We extend the features by extracting each of them
from different fields as mentioned previously. In addition,
with only one category of features for term selection, the
learning method will not perform very well because the
number of features is so low. Beyond that, we take TF_IDF
features as the baseline feature set because tf and idf have
been proved effective in IR for characteristic terms. We
examine the usefulness of other feature sets by combining
each of them with TF_IDF features. We report the experi-
mental results in Table 7 in terms of MAP, P@k, and
NDCG@k, where we denote NDCG@k as N@k.

From Table 7, we can see that, in comparison, three
feature sets, Proximity, Feedback, and CoocTwo, have the
top-3 best performance with the TF_IDF as a baseline
feature set. We take these three feature sets together as the
optimal feature set, denoted as Opti_Only. Next, we
examine the performance of the optimal feature set com-
bined with TF_IDF, denoted as Opti_TF_IDF. In addition,
we examine the performance of the term ranking model with
all the features.

Table 8 shows the performance of the ranking models
based on the three feature sets described above. Compared
with the feature set with all features and the Opti_TF_IDF
feature set, the Opti_Only feature set has the best

FIG. 2. Evaluation of the term-dependence method. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE 5. Evaluation of labeling strategies.

Strategy AP WSJ Robust2004

Impact_only 0.2792 0.3240 0.2292
Impact_k 0.2823 0.3307 0.2413

TABLE 6. Categories of features.

Category Feature ID Category Feature ID

TF_IDF 1,2,5,6 CoocTwo 9,10
DF 3,4 Feedback 12–14,17–19
CoocOne 7,8 Proximity 11,15,16

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 7
DOI: 10.1002/asi

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

1351

performance with fewer features, which contributes more to

the efficiency of training the term ranking model.

A possible explanation is that features in the Opti_Only

set have stronger capability both in expressing term rel-

evance with the original query and in discriminating them

from each other, and other features may have less ability

than these features, which makes them less important and

negligible in the training process. Therefore, we chose only

the Opti_Only feature set to train other term ranking models

in the next experiments.

Term Ranking Accuracy

This section evaluates our term ranking models with

diverse ranking methods, Regression, RankBoost,

RankSVM, and LambdaMART, in terms of term ranking

accuracy. Because our query expansion framework

aims at a further selection of expansion terms from a set of

candidate terms, we show the ranking accuracy to see

whether our term ranking models have the ability to find

more relevant terms for expansion. Let us now examine

the term ranking models. Specifically, we rank terms based

on the score by each method and compare different

ranking lists to test the term ranking accuracy. We adopt

MAP as the evaluation measures in the experiment because

MAP is more focused on ranking relevant terms on the

top of the ranking list, and top-ranked terms will get more

weight in expanded query, where the weight embodies

the degree of term relevance. Table 9 shows the experimen-

tal results. We compare the results using statistical tests

(i.e., two-tailed paired Student’s t tests), where an asterisk

indicates that improvement of term ranking over classifi-

cation method is significant with a 95% confidence level

(P < 0.05).

From Table 9, we can see that, compared with the TD

method, classification for terms can help choose more rel-

evant terms, and the improvement in term accuracy is

significant. Learning to rank approaches can contribute

more for selecting relevant terms compared with the classi-

fication method and show significant improvement over

classification method in terms of term ranking accuracy.

Experimental results show that learning to rank a set of

candidate terms can indeed help choose more relevant

terms for expansion. In the next subsection, we

examine whether term ranking can boost retrieval

performance.

To illustrate our expansion term selection method better,

we take the query numbered 51 as an example. The content

of the query is “Airbus Subsidies,” and we list the top 10

expansion terms obtained from both the classification model

and the LambdaMART ranking model in the AP collection,

together with the relevance judgment of each term, as shown

in Table 10.

From Table 10, we can see that, for query 51, the

LambdaMART ranking model achieves a more accurate

term ranking list, which can help choose more relevant

expansion terms. Higher ranked terms can acquire more

weights in the expanded query, so our framework may

enhance the retrieval performance using the term ranking

model.

TABLE 7. Evaluation on the usefulness of feature sets in terms of retrieval performance.

Feature set MAP P@3 P@5 P@10 N@3 N@5 N@10

TF_IDF 0.3016 0.5578 0.5373 0.4853 0.5584 0.5476 0.5168

DF + TF_IDF 0.3079 0.5511 0.5400 0.4980 0.5526 0.5482 0.5263

CoocOne + TF_IDF 0.3051 0.5422 0.5227 0.4913 0.5506 0.5380 0.5200

CoocTwo + TF_IDF 0.3112 0.5555 0.5373 0.4927 0.5589 0.5481 0.5216

Feedback + TF_IDF 0.3233 0.5555 0.5453 0.5107 0.5607 0.5557 0.5379

Proximity + TF_IDF 0.3306 0.5534 0.5400 0.5187 0.5682 0.5589 0.5476

TABLE 8. Evaluation for an optimal feature set.

Feature set MAP P@3 P@5 P@10 N@3 N@5 N@10

All Features 0.3293 0.5889 0.5667 0.5200 0.5846 0.5739 0.5485

Opti_TF_IDF 0.3298 0.5600 0.5653 0.5226 0.5636 0.5694 0.5474

Opti_Only 0.3307 0.5756 0.5680 0.5173 0.5828 0.5785 0.5495

TABLE 9. Term ranking accuracies evaluated by MAP.

Methods AP WSJ Robust2004

TD 0.5806 0.5721 0.4998

Classification 0.6029 0.5913 0.5389

Regression 0.6127* 0.5958* 0.5368

RankBoost 0.6163* 0.6006* 0.5419*

RankSVM 0.6185* 0.6057* 0.5476*

LambdaMART 0.6143* 0.6083* 0.5535*

*Improvement of term ranking over classification method is significant

with 95% confidence level (P < 0.05).

8 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015

DOI: 10.1002/asi
1352 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

Performance of Term Ranking Models Based on Learning
to Rank Methods

This section evaluates term ranking models compared
with baseline models, QL, RM, TD, and the classification
method. In the term ranking process, we adopt Impact_k as
the term relevance labeling strategy and feature set
Opti_Only for training term ranking models. Precision
evaluations (MAP) of results are shown in Table 11 with
respect to the three collections. We conduct fivefold cross-
validation both on term ranking models and on term classi-
fications models, and the results reported in Table 11 are
those averaged over five trials for each collection. Further-
more, we compare the retrieval performance using statistical
tests with 95% confidence level (P < 0.05). Specifically, we
perform significant tests over the retrieval performance of
the term classification method and TD methods to test
whether the improvement is significant, where an asterisk
and a dagger indicate that the MAP improvement is statis-
tically significant over the TD method and classification
method, respectively.

As we can see from Table 11, the TD method outper-
forms baseline models, QL and RM, on all the collections.
As stated above, more relevant candidate expansion terms
can be found by selecting terms using the TD method from

feedback document. Furthermore, the classification method
performs a little better than TD on WSJ and Robust2004 and
performs a little worse on AP, so it is inconsistent compared
with TD on the three collections. A similar tendency can be
found in term ranking models based on regression and Rank-
Boost in spite of some statistically significant improvement
over the classification method on the AP collection. These
three methods contribute less to retrieval performance in
spite of improvements in term ranking accuracy. Term
ranking model based on RankSVM performs better than the
former two term ranking models, which has significant
improvement on AP and significance ties on WSJ and
Robust2004 compared with the classification method, so we
find that term ranking based on RankSVM performs as well
as the classification method and slightly better than the TD
method. Term ranking based on LambdaMART performs
the best overall and shows a consistently significant
improvement over other methods on all the collections.
Experimental results show that the term ranking model
based on LambdaMART boosts term ranking accuracy com-
pared with other methods shown in Table 9 and shows sig-
nificant improvement on retrieval performance. Our
explanation is that, because it chose more relevant terms and
more reasonable term weights, higher term ranking accuracy
can contribute more to the retrieval performance; that is,
term ranking is effective in further selection of terms.

NDCG has proven effective in evaluating retrieval per-
formance with a graded relevance scale, so we evaluate the
results of different methods by NDCG. Figures 3–5 show
the results evaluated by P@k and NDCG@k on each col-
lection, where N@k denotes NDCG@k. On WSJ collection,
compared with the TD method, term ranking models get
better results. The classification method beats other methods
except for the ranking model based on lambdaMART in
terms of most evaluation measures. LamdbaMART per-
forms the best. The same tendency can be seen on the AP
collection, where TD performs the best as evaluated by P@3
and NDCG@3; that is, the top 3 documents returned by the
TD method are more relevant on the collection. Lambda-

TABLE 10. A toy example of expansion terms.

Top-10 terms using
classification

Relevance
judgment

Top-10 terms using
LambdaMART

Relevance
judgment

Airbus Relevant Airbus Relevant
Nations Irrelevant Subsidies Relevant
Subsidies Relevant Agreement Relevant
Agreement Relevant Decision Relevant
Decision Relevant Yeutter Relevant
Increase Relevant Provisions Relevant
Helpful Irrelevant Coming Irrelevant
Consortium Irrelevant Manufacturers Relevant
Coming Irrelevant Statement Relevant
Yeutter Relevant Nations Irrelevant

TABLE 11. Retrieval performance of term ranking models evaluated by
MAP.

Methods AP WSJ Robust2004

QL 0.2187 0.2721 0.2202
RM 0.2696 0.3117 0.2381
TD 0.2713 0.3210 0.2393
Classification 0.2655 0.3231 0.2394
Regression 0.2757*† 0.3130 0.2233
RankBoost 0.2789*† 0.3207 0.2208
RankSVM 0.2791*† 0.3214 0.2374
LambdaMART 0.2823*† 0.3307*† 0.2413*†
TD + Oracle 0.3822 0.4279 0.3485

*The MAP improvement is statistically significant over the TD method.
†The MAP improvement is statistically significant over the classification
method.

FIG. 3. Retrieval performance in terms of NDCG@k and P@k on the
WSJ collection. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 9
DOI: 10.1002/asi

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

1353

MART and RankSVM have better performance by other
measures. On the Robust2004 collection, we can get a
clearer view of the best. Ranking models based on Lamd-
baMART as well as RankSVM performs the best compared
with other methods.

Above all, we can see that different term ranking models
based on learning to rank approaches have different effects
on term selection. Pariwise term ranking models based on
RankBoost and rankSVM are more effective than the point-
wise method Regression and term ranking based on
RankSVM perform better than RankBoost. The listwise
term ranking model via LambdaMART achieves better
results than pairwise methods. Retrieval performances for
term ranking models based on LambdaMART and
RankSVM are more consistent on all the collections. The
analysis also shows that tree-based or non-inear models,
such as ranking models based on LambdaMART and
RankSVM, are more useful in term ranking for query expan-
sion than the TD method or classification method. Expanded
queries using the appropriate term ranking method can
indeed choose more relevant expansion terms and boost
retrieval performance.

Parameter Selection for Ranking Methods

We use the implementation of LambdaMART with ran-
domness presented by Ganjisaffar et al. (2011), in which a
basic learner should be fit on a subsample of the training set
drawn at random without replacement, and feature sampling
is also introduced on each tree split. Specifically, we tune
five parameters for the LambdaMART algorithm, including
maximum number of leaves per tree, minimum observations
allowed in each leaf, learning rate, training sampling rate,
and feature sampling rate. For RankSVM we tune the
parameter C, which indicates the trading-off margin size
against training error. For RankBoost, we tune the number
of weak learners for each fold, which is the round of itera-
tion. Table 12 shows the values of parameters used for
finding the optimal configuration of each algorithm. For
LambdaMART, we use grid search to examine the perfor-
mance of different combinations of parameters; for
RankSVM, we adjust the parameter C ranging from 10 to
100, and for RankBoost we choose the number of weak
learner from 100 to 1,000.

Discussion

Based on the experimental results, we investigate our
query expansion framework in this section, and include
some statistical analysis, the machine learning techniques,
time cost for model training, and parameter tuning processes
that could help enhancement in our study.

First, we perform some statistical analysis on our experi-
mental results. In the IR field, type I error relates to the
evaluation measure recall, which counts the ratio of
retrieved relevant documents, whereas type II error relates to
the evaluation measure precision, which focuses more on the
top-ranked documents. When a user uses a search engine, he
or she usually focuses more on the top-ranked item and less
on whether all the relevant documents have been retrieved.
Therefore, we use mainly a precision measure, especially
the MAP, to evaluate the retrieval performance in our
experiments. Comparing all the methods in terms of MAP,
we find that LambdaMART is more effective for term selec-
tion in our framework.

Our query expansion framework employs learning to
rank methods in expansion term selection, which uses
machine learning techniques to solve the ranking problem.

FIG. 4. Retrieval performance in terms of NDCG@k and P@k on the AP
collection. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

FIG. 5. Retrieval performance in terms of NDCG@k and P@k on the
Robust2004 collection. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

TABLE 12. Values of parameters used for tuning.

Methods Parameter Values

LambdaMART Max leaves 10, 15, 20, 25
Min obs. per leaf 0.12, 0.25, 0.5
Learning rate 0.025, 0.05, 0.1
Training sampling 0.25, 0.5, 0.75, 1
Feature sampling 0.25, 0.5, 0.75, 1

RankSVM C 10, 20 . . . 100
RankBoost Rounds 100, 200 . . . 1,000

10 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi

1354 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

Based on our experiments, we find that methods such as
classification and regression directly introduce machine
learning techniques into term selection, achieving a perfor-
mance comparable to that of the TD method, which can be
taken as a modification of traditional PRF. Furthermore,
pairwise methods, such as RankBoost and RankSVM,
respectively introduce boosting and support vector machine
techniques in consideration of pairwise term preference
orders, achieving better retrieval performance. The listwise
approach, LambdaMART, uses gradient boosting tree as
machine learning technique, outperforming other methods.
Therefore, we believe that the boosting approach, especially
the tree-based boosting model, is preferable for term selec-
tion in our query expansion framework.

In addition to some traditional evaluation measures, we
compare these methods in terms of computational time. We
find that our framework can achieve comparable time cost of
searching compared with the original PRF method except for
some additional time for model training, but, for a searching
system, term ranking models can be built in advance. Once
term ranking models have been learned, our framework can
achieve comparable time for a user to retrieve the informa-
tion needed. We compare the model training time of different
methods in Table 13, where the cost time is averaged over all
the five folds on the WSJ collection.

From Table 13, we can see that the regression-based term
ranking model takes the least time to train the ranking
model, and classification-based term selection, together with
term ranking models based on RankSVM and Lambda-
MART, takes comparable time. The RankBoost-based term
ranking model takes the most time. Therefore, we believe
that the LambdaMART-based term ranking model has the
best performance in terms of both traditional evaluation
measures and time cost for model training.

We tune the parameters N and k based on retrieval per-
formance of the original PRF method, in which N stands for
the number of feedback documents and k the number of
expanded terms in an expansion query. The parameter k is
also used in the term labeling strategy, Impact_k. We tune
the parameter M, the number of candidate terms, based on
the term ranking accuracies of the candidate terms. Figures
6–8 show the parameter tuning. We can see that relatively
good performance can be achieved when the parameters are
set as M = 150, N = 10, and k = 50.

Conclusions and Future Work

We have proposed a novel query expansion framework
for document retrieval based on learning to rank. Specifi-
cally, learning to rank is introduced to rerank candidate

terms obtained from feedback documents based on TD
methods. Statistical features of expansion terms with respect
to corresponding original queries are taken advantage of
during training a term ranking model, and further expansion
terms are selected based on the new term ranking list. We
compare and analyze the effectiveness of term ranking
models based on different learning to rank approaches. In
addition, we compare the performance of two labeling strat-
egies on terms and find that the strategy based on impact and
number of expansion terms is better for term ranking. We
examine the usefulness of various feature sets according to
the effectiveness of term ranking models based on them and
choose the optimal feature set for term ranking. Experiments
on three TREC collections show that integrating learning
to rank algorithms into query expansion can effectively

TABLE 13. Term ranking model training time for each method on WSJ collection.

Methods Classification Regression RankBoost RankSVM LambdaMART

Time cost 30.07s 16.25s 52.23s 32.40s 28.33s

FIG. 6. Sensitivity of parameter k (number of expansion terms) on the
AP, WSJ, and Robust2004 collections. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

FIG. 7. Sensitivity of parameter N (number of feedback documents) on
the AP, WSJ, and Robust2004 collections. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 11
DOI: 10.1002/asi

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

1355

improve retrieval performance. The term ranking model
based on LambdaMART performs the best for expansion
term selection. Our future work will explore several direc-
tions, finding more useful features for expansion term selec-
tion in the term ranking process and investigating more
efficient and effective learning to rank algorithms for term
ranking of query expansion.

Acknowledgments

This work is partially supported by grant from the
Natural Science Foundation of China (No. 61277370,
61402075), Natural Science Foundation of Liaoning Prov-
ince, China (No. 201202031, 2014020003), State Education
Ministry and The Research Fund for the Doctoral Program
of Higher Education (No. 20090041110002), the Funda-
mental Research Funds for the Central Universities.

References

Buckley, C. (1994). Automatic query expansion using smart: Trec 3. In
D.K. Harman (Ed.), In Proceedings of the third Text REtrieval Confer-
ence (TREC-3) (pp. 69–80). Gaithersburg, MD: National Institute of
Standards and Technology.

Burges, C.J. (2010). From ranknet to lambdarank to lambdamart: An over-
view. Microsoft Research Technical Report MSR-TR-2010-82.

Burges, C.J., Ragno, R., & Le, Q.V. (2006). Learning to rank with nons-
mooth cost functions. In B. Schölkopf, J.C. Platt, & T. Hoffman (Eds.),
Proceedings of the 20th Annual Conference on Neural Information Pro-
cessing Systems. NIPS (pp. 193–200). Cambridge, MA: MIT Press.

Cao, G., Nie, J.Y., Gao, J., & Robertson, S. (2008). Selecting good expan-
sion terms for pseudo-relevance feedback. In S.H. Myaeng, D.W. Oard,
F. Sebastiani, T.S. Chua, & M.K. Leong (Eds.), Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (pp. 243–250). New York, NY: ACM.

Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., & Hon, H.W. (2006). Adapting
ranking svm to document retrieval. In E.N. Efthimiadis, S. Dumais, D.
Hawking, & K. Järvelin (Eds.), Proceedings of the 29st Annual Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (pp. 186–193). New York, NY: ACM.

Cronen-Townsend, S., Zhou, Y., & Croft, W.B. (2004). A framework for
selective query expansion. In D.A. Grossman, L. Gravano, C.X. Zhai, O.

Herzog, & D.A. Evans (Eds.), Proceedings of the 13st ACM International
Conference on Information and Knowledge Management (pp. 236–237).
New York, NY: ACM.

Freund, Y., Lyer, R.D., Schapire, R.E., & Singer, Y. (2003). An efficient
boosting algorithm for combining preferences. Journal of Machine
Learning Research, 4(1), 933–969.

Friedman, J.H. (2001). Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29(5), 1189–1232.

Ganjisaffar, Y., Caruana, R., & Lopes, C.V. (2011). Bagging gradient-
boosted trees for high precision, low variance ranking models. In W.Y.
Ma, J.Y. Nie, R.A. Baeza-Yates, T.S. Chua, & W.B. Croft (Eds.), Pro-
ceedings of the 34st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (pp. 85–94). New
York, NY: ACM.

Joachims, T. (1999). Making large-scale support vector machine learning
practical. In B. Schölkopf, C.J.C. Burges, & A.J. Smola (Eds.), Advances
in kernel methods (pp. 169–184). Cambridge, MA: MIT Press.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In
O.R. Zaïane & R. Goebel (Eds.), Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD (pp. 133–142). New York, NY: ACM.

Joachims, T. (2006). Training linear svms in linear time. In L. Ungar & T.
Eliassi-Rad (Eds.), Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD (pp. 217–
226). New York, NY: ACM.

Jones, R., & Fain, D.C. (2003). Query word deletion prediction. In C.
Clarke & G. Cormack (Eds.), Proceedings of the 26th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (pp. 435–436). New York, NY: ACM.

Kumaran, G., & Allan, J. (2008a). Effective and efficient user interaction
for long queries. In S.H. Myaeng, D.W. Oard, F. Sebastiani, T.S. Chua, &
M.K. Leong (Eds.), Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (pp. 11–18). New York, NY: ACM.

Kumaran, G., & Allan, J. (2008b). Adapting information retrieval systems
to user queries. Information Processing & Management, 44(6), 1838–
1862.

Lavrenko, V., & Croft, W.B. (2001). Relevance based language models. In
W.B. Croft, D.J. Harper, D.H. Kraft, & J. Zobel (Eds.), Proceedings of
the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 120–127). New York, NY:
ACM.

Lease, M. (2009). An improved markov random field model for supporting
verbose queries. In J. Allan, J.A. Aslam, M. Sanderson, C.X. Zhai, & J.
Zobel (Eds.), Proceedings of the 32nd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (pp.
476–483). New York, NY: ACM.

Lease, M., Allan, J., & Croft, W.B. (2009). Regression rank: Learning to
meet the opportunity of descriptive queries. In M. Boughanem, C. Berrut,
J. Mothe, & C. Soulé-Dupuy (Eds.), Advances in Information Retrieval
(pp. 90–101). Berlin, Heidelberg: Springer.

Lee, C.J., Chen, R.C., Kao, S.H., & Cheng, P.J. (2009). A term dependency-
based approach for query terms ranking. In D.W. Cheung, I.Y. Song,
W.W. Chu, X. Hu, & J.J. Lin (Eds.), Proceedings of the 18th ACM
International Conference on Information and Knowledge Management
(pp. 1267–1276). New York, NY: ACM.

Lee, K.S., Croft, W.B., & Allan, J. (2008). A cluster-based resampling
method for pseudo-relevance feedback. In S.H. Myaeng, D.W. Oard, F.
Sebastiani, T.S. Chua, & M.K. Leong (Eds.), Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (pp. 235–242). New York: ACM.

Lin, Y., Lin, H., Jin, S., & Ye, Z. (2011). Social annotation in query
expansion: a machine learning approach. In W.Y. Ma, J.Y. Nie, R.A.
Baeza-Yates, T.S. Chua, & W.B. Croft (Eds.), Proceedings of the 34stAn-
nual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (pp. 405–414). New York, NY: ACM.

Liu, T.Y. (2009). Learning to rank for information retrieval. Hanover, MA:
Foundations and Trends in Information Retrieval.

FIG. 8. Sensitivity of parameter M (number of candidate expansion
terms) on the AP, WSJ, and Robust2004 collections. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

12 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015
DOI: 10.1002/asi

1356 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

Lv, Y., Zhai, C., & Chen, W. (2011). A boosting approach to improving

pseudo-relevance feedback. In W.Y. Ma, J.Y. Nie, R.A. Baeza-Yates, T.S.

Chua, & W.B. Croft (Eds.), Proceedings of the 34st Annual International

ACM SIGIR Conference on Research and Development in Information

Retrieval (pp. 165–174). New York, NY: ACM.

Metzler, D., & Croft, W.B. (2007). Latent concept expansion using markov

random fields. In W. Kraaij, A.P. de Vries, C.L.A. Clarke, N. Fuhr, & N.

Kando (Eds.), Proceedings of the 30st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (pp.

311–318). New York, NY: ACM.

Oliveira, V., Gomes, G., Belém, F., Brandão, W., Almeida, J., Ziviani, N., &

Gonçalves, M. (2012). Automatic query expansion based on tag recom-

mendation. In X. Chen, G. Lebanon, H. Wang, & M.J. Zaki (Eds.),

Proceedings of the 21st ACM International Conference on Information

and Knowledge Management (pp. 1985–1989). New York, NY:

ACM.

Ponte, J.M., & Croft, W.B. (1998). A language modeling approach to

information retrieval. In W.B. Croft, A. Moffat, C.J. Rijsbergen, R.

Wilkinson, & J. Zobel (Eds.), Proceedings of the 21st Annual Interna-

tional ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval (pp. 275–281). New York, NY: ACM.

Qin, T., Liu, T.Y., Xu, J., & Li, H. (2010). Letor: A benchmark collection for

research on learning to rank for information retrieval. Information

Retrieval, 13(4), 346–374.

Robertson, S.E., Walker, S., Beaulieu, M., Gatford, M., & Payne, A.

(1996). Okapi at trec-4. In D.K. Harman (Ed.), Proceeding of the Fourth

Text Retrieval Conference. NIST Special Publication (pp. 73–97).

Gaithersburg, MD: National Institute of Standards and Technology.

Rocchio, J. (1971). Relevance feedback in information retrieval. In G.

Salton (Ed.), The Smart Retrieval System (pp. 313–323). Englewood

Cliffs, NJ: Prentice-Hall.

Strohman, T., Metzler, D., Turtle, H., & Croft, W.B. (2004). Indri: A

language model-based search engine for complex queries. In K. Masback

(Ed.), Proceedings of the International Conference on Intelligence

Analysis (pp. 2–6). Washington, DC: Central Intelligence for Analysis

and Production.

Sun, J., Wang, S., Gao, B.J., & Ma, J. (2012). Learning to rank for hybrid

recommendation. In X. Chen, G. Lebanon, H. Wang, & M.J. Zaki (Eds.),

Proceedings of the 21st ACM International Conference on Information

and Knowledge Management (pp. 2239–2242). New York, NY: ACM.

Surdeanu, M., Ciaramita, M., & Zaragoza, H. (2008). Learning to rank

answers on large online qa collections. In K. McKeown, J.D. Moore, S.

Teufel, J. Allan, & S. Furui (Eds.), Proceedings of the 46th Annual

Meeting of the Association for Computational Linguistics. ACL (pp.

719–727). Cambridge, MA: MIT Press.

Tao, T., & Zhai, C. (2006). Regularized estimation of mixture models for

robust pseudo-relevance feedback. In E.N. Efthimiadis, S. Dumais, D.

Hawking, & K. Järvelin (Eds.), Proceedings of the 29st Annual Interna-

tional ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval (pp. 162–169). New York, NY: ACM.

Wu, Q., Burges, C.J., Svore, K.M., & Gao, J. (2008). Ranking, boosting,

and model adaptation. Microsoft Research Technical Report MSR-TR-

2008-109.

Xu, J., & Croft, W.B. (1996). Query expansion using local and global

document analysis. In H.P. Frei, D. Harman, P. Schäuble, & R. Wilkinson

(Eds.), Proceedings of the 19st Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval (pp.

4–11). New York, NY: ACM.

Xu, J., & Li, H. (2007). Adarank: a boosting algorithm for information

retrieval. In W. Kraaij, A.P. de Vries, C.L.A. Clarke, N. Fuhr, & N.

Kando (Eds.), Proceedings of the 30st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (pp.

391–398). New York, NY: ACM.

Zhai, C., & Lafferty, J. (2001). Model-based feedback in the language

modeling approach to information retrieval. In C. Pu, D. Grossman, & H.

Paques (Eds.), Proceedings of the Tenth International Conference on

Information and Knowledge Management (pp. 403–410). New York,

NY: ACM.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—•• 2015 13

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—June 2016

DOI: 10.1002/asi

1357

